A140520 a(n) = binomial(n+9, 9)*5^n.
1, 50, 1375, 27500, 446875, 6256250, 78203125, 893750000, 9496093750, 94960937500, 902128906250, 8201171875000, 71760253906250, 607202148437500, 4987731933593750, 39901855468750000, 311733245849609375, 2383842468261718750, 17878818511962890625, 131738662719726562500
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (50,-1125,15000,-131250,787500,-3281250,9375000,-17578125,19531250,-9765625).
Programs
-
Maple
seq(binomial(n+9,9)*5^n,n=0..20);
-
Mathematica
Table[Binomial[n + 9, 9] 5^n, {n, 0, 16}] (* or *) CoefficientList[Series[1/(1 - 5 x)^10, {x, 0, 16}], x] (* Michael De Vlieger, Mar 20 2017 *)
Formula
From Chai Wah Wu, Mar 20 2017: (Start)
a(n) = 50*a(n-1) - 1125*a(n-2) + 15000*a(n-3) - 131250*a(n-4) + 787500*a(n-5) - 3281250*a(n-6) + 9375000*a(n-7) - 17578125*a(n-8) + 19531250*a(n-9) - 9765625*a(n-10) for n > 9.
G.f.: 1/(1 - 5*x)^10. (End)
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 2949120*log(5/4) - 36852261/56.
Sum_{n>=0} (-1)^n/a(n) = 75582720*log(6/5) - 771700059/56. (End)
Comments