A140575
Triangle read by rows: the coefficient of [x^k] of the polynomial 1-(x-1)^n in row n and column k, 0<=k
0, 2, -1, 0, 2, -1, 2, -3, 3, -1, 0, 4, -6, 4, -1, 2, -5, 10, -10, 5, -1, 0, 6, -15, 20, -15, 6, -1, 2, -7, 21, -35, 35, -21, 7, -1, 0, 8, -28, 56, -70, 56, -28, 8, -1, 2, -9, 36, -84, 126, -126, 84, -36, 9, -1, 0, 10, -45, 120, -210, 252, -210, 120, -45, 10, -1
Offset: 0
Examples
0; 2, -1; 0, 2, -1; 2, -3, 3, -1; 0, 4, -6, 4, -1; 2, -5, 10, -10, 5, -1; 0, 6, -15, 20, -15, 6, -1; 2, -7, 21, -35, 35, -21, 7, -1; 0, 8, -28,56, -70, 56, -28, 8, -1; 2, -9, 36, -84, 126, -126, 84, -36, 9, -1; 0, 10, -45, 120, -210, 252, -210, 120, -45, 10, -1;
Crossrefs
Cf. A091917.
Programs
-
Mathematica
Clear[p] p[x, 0] = 1; p[x, 1] = x - 1; p[x_, n_] := x^n*(1/x^n - (1 - 1/x)^n); a = Table[ExpandAll[p[x, n]], {n, 0, 10}]; b = Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]; Flatten[b]
Formula
T(n,k) = T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(0,0) = 0, T(1,0) = 2, T(1,1) = -1, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, May 24 2015
Comments