A140579 Triangle read by rows, A014963(n) * 0^(n-k); 1<=k<=n.
1, 0, 2, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13
Offset: 1
Examples
First few rows of the triangle are: 1; 0, 2; 0, 0, 3; 0, 0, 0, 2; 0, 0, 0, 0, 5; 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 7; ...
Links
- G. C. Greubel, Rows n=1..100 of triangle, flattened
Programs
-
Mathematica
Table[If[k != n ,0,Exp[MangoldtLambda[n]]], {n,1,12}, {k,1,n}]//Flatten (* G. C. Greubel, Feb 16 2019 *)
-
PARI
{T(n,k) = if(n==1, 1, gcd(vector(n-1, k, binomial(n, k)))*0^(n-k))}; for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 16 2019
-
Sage
def T(n,k): return simplify(exp(add(moebius(d)*log(n/d) for d in divisors(n))))*0^(n-k) [[T(n,k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Feb 16 2019
Comments