cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140579 Triangle read by rows, A014963(n) * 0^(n-k); 1<=k<=n.

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, May 17 2008

Keywords

Comments

A140579 * [1, 2, 3,...] = A140580.
(A140579)^(-1) * [1, 2, 3,...] = A048671: (1, 1, 1, 2, 1, 6, 1, 4, 3, 10,...).
A008683 = A140579^(-1) * A140664. - Gary W. Adamson, May 20 2008

Examples

			First few rows of the triangle are:
1;
0, 2;
0, 0, 3;
0, 0, 0, 2;
0, 0, 0, 0, 5;
0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 7;
...
		

Crossrefs

Programs

  • Mathematica
    Table[If[k != n ,0,Exp[MangoldtLambda[n]]], {n,1,12}, {k,1,n}]//Flatten (* G. C. Greubel, Feb 16 2019 *)
  • PARI
    {T(n,k) = if(n==1, 1, gcd(vector(n-1, k, binomial(n, k)))*0^(n-k))};
    for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 16 2019
    
  • Sage
    def T(n,k): return simplify(exp(add(moebius(d)*log(n/d) for d in divisors(n))))*0^(n-k)
    [[T(n,k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Feb 16 2019

Formula

Triangle read by rows, A014963(n) * 0^(n-k); 1<=k<=n.
Infinite lower triangular matrix with A014963 (1, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11,...) in the main diagonal and the rest zeros.