A140613 Primes of the form 7*x^2 + 6*x*y + 39*y^2.
7, 79, 127, 151, 271, 439, 607, 919, 967, 1063, 1231, 1327, 1399, 1447, 1471, 1663, 1759, 1999, 2239, 2287, 2383, 2503, 2551, 2647, 2719, 2767, 2791, 3079, 3319, 3343, 3511, 3559, 3583, 3607, 3823, 3847, 3967, 4111, 4231, 4567, 4639, 4663
Offset: 1
Links
- Vincenzo Librandi, N. J. A. Sloane and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi, next 5218 terms from N. J. A. Sloane]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- J. Voight, Quadratic forms that represent almost the same primes, Math. Comp., Vol. 76 (2007), pp. 1589-1617. See Example 6.1. - _N. J. A. Sloane_, Jun 07 2014
Crossrefs
Cf. A140633.
Programs
-
Mathematica
Union[QuadPrimes2[7, 6, 39, 10000], QuadPrimes2[7, -6, 39, 10000]] (* see A106856 *)
-
PARI
select(n-> n%264==7 || n%264==79 || n%264==127 || n%264==151 || n%264==175, primes(100000)) \\ N. J. A. Sloane, Jun 07 2014
Formula
These are exactly the primes congruent to one of 7, 79, 127, 151, or 175 (mod 264) [Voight]. - N. J. A. Sloane, Jun 07 2014
Extensions
Incorrect Mathematica program deleted by N. J. A. Sloane, Jun 07 2014
Comments