cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140618 Primes of the form 20*x^2+4*x*y+23*y^2.

Original entry on oeis.org

23, 47, 191, 239, 263, 311, 359, 479, 503, 647, 719, 1031, 1103, 1151, 1223, 1487, 1559, 1583, 1607, 1847, 1871, 2039, 2063, 2087, 2399, 2543, 2591, 2927, 2999, 3407, 3671, 3767, 3863, 3911, 4007, 4127, 4463, 4583, 4679, 4751, 4799, 4871
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant = -1824. Also primes of the form 23*x^2+20*x*y+44*y^2.
In base 12, the sequence is 1E, 3E, 13E, 17E, 19E, 21E, 25E, 33E, 35E, 45E, 4EE, 71E, 77E, 7EE, 85E, X3E, X9E, XEE, E1E, 109E, 10EE, 121E, 123E, 125E, 147E, 157E, 15EE, 183E, 189E, 1E7E, 215E, 221E, 229E, 231E, 239E, 247E, 26EE, 279E, 285E, 28EE, 293E, 299E, where X is for 10 and E is for 11. Moreover, the discriminant is -1080. - Walter Kehowski, May 31 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[20, 4, 23, 10000], QuadPrimes2[20, -4, 23, 10000]] (* see A106856 *)