cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140628 Primes of the form 39x^2+6xy+71y^2.

Original entry on oeis.org

71, 239, 311, 599, 719, 1151, 1319, 1439, 1511, 1559, 1871, 2111, 2879, 2999, 3359, 3719, 3911, 4079, 4271, 4751, 4871, 5039, 5279, 5591, 5639, 6311, 6719, 6791, 6959, 7079, 8039, 8951, 8999, 9239, 9431, 9479, 9551, 9719, 9791, 9839, 10151
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-11040. Also primes of the form 71x^2+70xy+95y^2.
In base 12, the sequence is 5E, 17E, 21E, 41E, 4EE, 7EE, 91E, 9EE, X5E, X9E, 10EE, 127E, 17EE, 189E, 1E3E, 219E, 231E, 243E, 257E, 28EE, 299E, 2XEE, 307E, 329E, 331E, 379E, 3X7E, 3E1E, 403E, 411E, 479E, 521E, 525E, 541E, 555E, 559E, 563E, 575E, 57EE, 583E, 5X5E, where X is 10 and E is 11. Moreover, the discriminant is -6480. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[39, 6, 71, 10000], QuadPrimes2[39, -6, 71, 10000]] (* see A106856 *)