cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140664 a(n) = A014963(n)*mobius(n).

Original entry on oeis.org

1, -2, -3, 0, -5, 1, -7, 0, 0, 1, -11, 0, -13, 1, 1, 0, -17, 0, -19, 0, 1, 1, -23, 0, 0, 1, 0, 0, -29, -1, -31, 0, 1, 1, 1, 0, -37, 1, 1, 0, -41, -1, -43, 0, 0, 1, -47, 0, 0, 0, 1, 0, -53, 0, 1, 0, 1, 1, -59, 0, -61, 1, 0
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, May 20 2008

Keywords

Comments

A008683 = A140579^(-1) * A140664 - Gary W. Adamson, May 20 2008

Crossrefs

Programs

  • Maple
    A140664 := proc(n)
            A014963(n)*numtheory[mobius](n) ;
    end proc:
    seq(A140664(n),n=1..80) ; # R. J. Mathar, Apr 05 2012
  • Mathematica
    Table[Exp[MangoldtLambda[n]]*MoebiusMu[n], {n, 1, 75}] (* G. C. Greubel, Feb 15 2019 *)
  • PARI
    {a(n) = if(n==1, 1, gcd(vector(n-1, k, binomial(n, k)))*moebius(n))};
    vector(75, n, a(n)) \\ G. C. Greubel, Feb 15 2019
    
  • Sage
    def A140664(n): return simplify(exp(add(moebius(d)*log(n/d) for d in divisors(n))))*moebius(n)
    [A140664(n) for n in (1..75)] # G. C. Greubel, Feb 15 2019

Formula

A140579 as an infinite lower triangular matrix * A008683 as a vector, where A008683 = the mu sequence and A140579 is a diagonalized matrix version of A014963. Given the A008683, the mu sequence (1, -1, -1, 0, -1, 1, -1, 0, 0, 1,...), replace (-1) with (-n). Other mu(n) remain the same.