A140682 Triangle T(n,k) = gcd(n,k)-binomial(n,k), 0<=k<=n.
-1, 0, 0, 1, -1, 1, 2, -2, -2, 2, 3, -3, -4, -3, 3, 4, -4, -9, -9, -4, 4, 5, -5, -13, -17, -13, -5, 5, 6, -6, -20, -34, -34, -20, -6, 6, 7, -7, -26, -55, -66, -55, -26, -7, 7, 8, -8, -35, -81, -125, -125, -81, -35, -8, 8, 9, -9, -43, -119, -208, -247, -208, -119, -43, -9, 9
Offset: 0
Examples
-1; 0, 0; 1, -1, 1; 2, -2, -2, 2; 3, -3, -4, -3, 3; 4, -4, -9, -9, -4, 4; 5, -5, -13, -17, -13, -5, 5; 6, -6, -20, -34, -34, -20, -6, 6; 7, -7, -26, -55, -66, -55, -26, -7, 7; 8, -8, -35, -81, -125, -125, -81, -35, -8, 8; 9, -9, -43, -119, -208, -247, -208, -119, -43, -9, 9;
Crossrefs
Cf. A109004.
Programs
-
Maple
A140682 := proc(n,k) igcd(n,k)-binomial(n,k) ; end proc: # R. J. Mathar, Jan 17 2013
-
Mathematica
Clear[p, x, n] p[x_, n_] = Sum[(GCD[n, i] - Binomial[n, i])*x^i, {i, 0, n}]; Table[ExpandAll[p[x, n]], {n, 1, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 1, 10}]; Flatten[a]
Formula
T(n,k) = T(n,n-k).
Extensions
New name, editing, and missing leading terms added. - R. J. Mathar, Jan 17 2013
Comments