cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140697 Mobius transform of A000082.

Original entry on oeis.org

1, 5, 11, 18, 29, 55, 55, 72, 96, 145, 131, 198, 181, 275, 319, 288, 305, 480, 379, 522, 605, 655, 551, 792, 720, 905, 864, 990, 869, 1595, 991, 1152, 1441, 1525, 1595, 1728, 1405, 1895, 1991, 2088, 1721, 3025, 1891, 2358, 2784, 2755, 2255, 3168, 2688, 3600
Offset: 1

Views

Author

Gary W. Adamson, May 23 2008

Keywords

Comments

Dirichlet convolution of the sequence of (absolute values of A055615) and A007434. - R. J. Mathar, Feb 27 2011

Examples

			a(4) = 18 = (0, -1, 0, 1) dot (1, 6, 12, 24), where (0, -1 0, 1) = row 4 of A054525 and A000082 = (1, 6, 12, 24, 30, 72,...).
		

Crossrefs

Programs

  • Maple
    with (numtheory): a:= n-> add (k^2* mul(1+1/p, p=factorset(k)) *mobius (n/k), k=divisors(n)): seq (a(n), n=1..60); # Alois P. Heinz, Aug 28 2008
  • Mathematica
    a[n_] := Sum[ k^2*Product[ 1+1/p, {p, FactorInteger[k][[All, 1]]}]* MoebiusMu[n/k], {k, Divisors[n]}] - MoebiusMu[n]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 03 2012, after Alois P. Heinz *)
    f[p_, e_] := (p - 1)*(p + 1)^2*p^(2*e - 3); f[p_, 1] := p*(p + 1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 28 2023 *)

Formula

Dirichlet g.f.: zeta(s-1)*zeta(s-2)/(zeta(2s-2)*zeta(s)). - R. J. Mathar, Feb 27 2011
Sum_{k=1..n} a(k) ~ 5*n^3 / (Pi^2 * zeta(3)). - Vaclav Kotesovec, Jan 11 2019
Multiplicative with a(p) = p*(p+1) - 1, and a(p^e) = (p-1)*(p+1)^2*p^(2*e-3) for e >= 2. - Amiram Eldar, Oct 28 2023

Extensions

Definition corrected by N. J. A. Sloane, Jul 28 2008
More terms from Alois P. Heinz, Aug 28 2008