cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A140712 Number of white corners in all permutations of {1,2,...,n} (for definition see the Eriksson-Linusson references).

Original entry on oeis.org

0, 1, 6, 37, 256, 2000, 17520, 170520, 1827840, 21409920, 272160000, 3732220800, 54925516800, 863480217600, 14442536908800, 256086230400000, 4798293147648000, 94731418349568000, 1965528727658496000
Offset: 1

Views

Author

Emeric Deutsch, May 28 2008

Keywords

References

  • K. Eriksson and S. Linusson. Combinatorics of Fulton's essential set. Duke Mathematical Journal 85(1):61-76, 1996.

Crossrefs

Programs

  • GAP
    List([1..30], n -> Factorial(n-1)*(n-1)*(n^2 +13*n+6)/36); # G. C. Greubel, Nov 28 2018
  • Magma
    [Factorial(n-1)*(n-1)*(n^2+13*n+6)/36: n in [1..20]]; // G. C. Greubel, Nov 28 2018
    
  • Maple
    seq((1/36)*(n-1)*factorial(n-1)*(n^2+13*n+6),n=1..20);
  • Mathematica
    Table[(n-1)!*(n-1)*(n^2 +13*n+6)/36, {n,1,20}] (* G. C. Greubel, Nov 28 2018 *)
  • PARI
    a(n)=(n^2+13*n+6)*(n-1)*(n-1)!/36 \\ Charles R Greathouse IV, Oct 31 2011
    
  • Sage
    [factorial(n-1)*(n-1)*(n^2 +13*n+6)/36 for n in (1..20)] # G. C. Greubel, Nov 28 2018
    

Formula

a(n) = Sum_{k=0..n-1} k*A140711(n,k).
a(n) = (n-1)!*(binomial(n-1,3)+6*binomial(n,2))/6 = (n-1)!*(n-1)*(n^2+13*n+6)/36.
E.g.f.: (x*(6 + 3*x - 7*x^2) + (6 - 18*x + 18*x^2 - 6*x^3)*log(1-x))/(36* (1-x)^3). - G. C. Greubel, Nov 28 2018
D-finite with recurrence 2*(-n+5)*a(n) +(2*n^2-31*n+51)*a(n-1) +(25*n-14)*(n-2)*a(n-2)=0. - R. J. Mathar, Jul 26 2022

A140713 Triangle read by rows: T(n,k) is the number of white corners of rank k in all the permutations of {1,2,...,n} (n>=2, 0<=k<=n-2; for definitions see the Eriksson-Linusson references).

Original entry on oeis.org

1, 5, 1, 26, 9, 2, 154, 70, 26, 6, 1044, 562, 268, 102, 24, 8028, 4860, 2700, 1308, 504, 120, 69264, 45756, 28224, 15828, 7728, 3000, 720
Offset: 2

Views

Author

Emeric Deutsch, May 29 2008

Keywords

Comments

Sum of row n is A140712(n).
T(n,0) = A001705(n-1).
T(n,n-2) = (n-2)!.

Examples

			Triangle starts:
1;
5,1;
26,9,2;
154,70,26,6;
1044,562,268,102,24;
		

References

  • K. Eriksson and S. Linusson. Combinatorics of Fulton's essential set. Duke Mathematical Journal 85(1):61-76, 1996.

Crossrefs

A213166 Triangle, read by rows, of permutations of length n with k white global corners.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 10, 1, 1, 35, 63, 20, 1, 1, 111, 348, 224, 35, 1, 1, 405, 1920, 2027, 630, 56, 1, 1, 1733, 11247, 17142, 8600, 1512, 84, 1, 1, 8666, 71861, 145375, 104175, 29447, 3234, 120, 1
Offset: 1

Views

Author

Olivier Gérard, Oct 30 2012

Keywords

Comments

Definition of white corners (as used in the Eriksson/Linusson reference):
In the representation of a permutation p as a n*n square array with n black cells at positions (i,p(i)), color in gray all cells in the row segment from each black cell to the right (east) border and in the column segment from each black cell to the bottom (south) border. Among the remaining white cells, the white corners are those without east or south white (immediate) neighbors.
In this modified sequence (not present in the Eriksson/Linusson reference), white global corners are without east or south white neighbors in the east row segment and the south column segment joining the border. This ensures that there can be at most only one white global corner for a given row or a given column. The table is triangular.
Equivalent definitions can use different borders and orientations.
Sum of entries in row n is n! (A000142).

Examples

			Table begins:
1;
1, 1;
1, 4,    1;
1, 12,   10,    1;
1, 35,   63,    20,     1;
1, 111,  348,   224,    35,     1;
1, 405,  1920,  2027,   630,    56,    1;
1, 1733, 11247, 17142,  8600,   1512,  84,   1;
1, 8666, 71861, 145375, 104175, 29447, 3234, 120, 1;
...
		

Crossrefs

Cf. A140711 (permutations by white "local" corners).
Showing 1-3 of 3 results.