cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140735 Triangle read by rows, X^n * [1,0,0,0,...]; where X = a tridiagonal matrix with (1,2,3,...) in the main diagonal and (1,1,1,...) in the sub and subsubdiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 5, 2, 1, 1, 7, 19, 16, 12, 3, 1, 1, 15, 65, 90, 95, 46, 22, 4, 1, 1, 31, 211, 440, 630, 461, 295, 100, 35, 5, 1, 1, 63, 665, 2002, 3801, 3836, 3156, 1556, 710, 185, 51, 6, 1, 1, 127, 2059, 8736, 21672, 28819, 29729, 19440, 11102, 4116, 1456, 308, 70
Offset: 1

Views

Author

Gary W. Adamson, May 25 2008

Keywords

Comments

T(m,k) is the number of achiral color patterns in a row or loop of length 2m-1 using exactly k different colors. Two color patterns are equivalent if we permute the colors. - Robert A. Russell, Mar 24 2018

Examples

			First few rows of the triangle are:
  1;
  1,  1,   1;
  1,  3,   5,    2,    1;
  1,  7,  19,   16,   12,    3,    1;
  1, 15,  65,   90,   95,   46,   22,    4,   1;
  1, 31, 211,  440,  630,  461,  295,  100,  35,   5,  1;
  1, 63, 665, 2002, 3801, 3836, 3156, 1556, 710, 185, 51, 6, 1;
  ...
T(3,3)=5 is the number of achiral color patterns of length five using exactly three colors. These are AABCC, ABACA, ABBBC, ABCAB, and ABCBA for both rows and loops. - _Robert A. Russell_, Mar 24 2018
		

Crossrefs

Cf. A080337 (row sums), A140733, A140744.
Number of achiral color patterns of length even n in A293181.

Programs

  • Mathematica
    (* Ach[n, k] is the number of achiral color patterns for a row or loop of n
      colors containing k different colors *)
    Ach[n_, k_] := Ach[n, k] = Which[0==k, Boole[0==n], 1==k, Boole[n>0],
      OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}],
      True, Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
      + 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]
    Table[Ach[n, k], {n, 1, 13, 2}, {k, 1, n}] // Flatten
    (* Robert A. Russell, Feb 06 2018 *)
    Table[MatrixPower[Table[Switch[j-i, 0,i, 1,1, 2,1, _,0],
      {i, 1, 2 n - 1}, {j, 1, 2 n - 1}], n-1][[1]], {n, 1, 10}]
      // Flatten (* Robert A. Russell, Mar 24 2018 *)
    Aodd[m_, k_] := Aodd[m, k] = If[m > 1, k Aodd[m-1, k] + Aodd[m-1, k-1]
      + Aodd[m-1, k-2], Boole[m==1 && k==1]]
    Table[Aodd[m,k],{m,1,10},{k,1,2m-1}] // Flatten (* Robert A. Russell, Apr 24 2018 *)

Formula

G.f.(exponential in x, ordinary in t): exp(x+t*(exp(x)-1)+(1/2)*t^2*(exp(2*x)-1)). - Ira M. Gessel, Jan 30 2018
T(m,k) = [m>1]*(k*T(m-1,k)+T(m-1,k-1)+T(m-1,k-2)) + [m==1]*[k==1] - Robert A. Russell, Apr 24 2018