A140756 Count up to k sequence with alternating signs (k always positive).
1, -1, 2, 1, -2, 3, -1, 2, -3, 4, 1, -2, 3, -4, 5, -1, 2, -3, 4, -5, 6, 1, -2, 3, -4, 5, -6, 7, -1, 2, -3, 4, -5, 6, -7, 8, 1, -2, 3, -4, 5, -6, 7, -8, 9, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13
Offset: 1
Examples
Triangle begins: 1; -1, 2; 1, -2, 3; -1, 2, -3, 4; 1, -2, 3, -4, 5; -1, 2, -3, 4, -5, 6;
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
[(-1)^(n+k)*k: k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 21 2023
-
Mathematica
a[n_]:= With[{t=Floor[(-1+Sqrt[8*n-7])/2]}, (-1)^(Binomial[t+2,2] -n)*(n-Binomial[t+1,2])]; Table[a[n], {n,100}] (* G. C. Greubel, Oct 21 2023 *)
-
Python
from math import comb, isqrt def A140756(n): return comb(r,2)-n if comb((r:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))+1,2)-n&1 else n-comb(r,2) # Chai Wah Wu, Jun 09 2025
-
SageMath
flatten([[(-1)^(n+k)*k for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 21 2023
Formula
Regarded as a triangle, T(n,k) = (-1)^{n-k} * k.
From Boris Putievskiy, Mar 14 2013: (Start)
a(n) = (-1)^(j+1) * i, where i = n - t*(t+1)/2, j = (t^2 + 3*t + 4)/2 -n, and t = floor((-1 + sqrt(8*n-7))/2). (End)
Comments