A140803 Numbers of the form (2^(p*q)-1) /((2^p-1)*(2^q-1)), where p>q are primes.
3, 11, 43, 151, 683, 2359, 2731, 43691, 174763, 599479, 2796203, 8727391, 9588151, 178956971, 715827883, 2454285751, 39268347319, 45812984491, 567767102431, 733007751851, 2932031007403, 10052678938039, 46912496118443, 145295143558111, 3002399751580331, 41175768098368951, 192153584101141163
Offset: 1
Keywords
Examples
Entry 3 from (q=2,p=3), entry 11 from (q=2,p=5), entry 43 from (q=2,p=7), entry 151 from (q=3,p=5), entry 683 from (q=2,p=11).
Links
- Robert Israel, Table of n, a(n) for n = 1..825
- V. Shevelev, Process of "primoverization" of numbers of the form a^n-1, arXiv:0807.2332 [math.NT], 2008.
- S. Wagstaff, Factorizations of 2^n-1
Programs
-
Maple
N:= 100: # to use all (p,q) with p*q < N Primes:= select(isprime,[$2..floor(N/2)]): A:= {}: for i from 1 to nops(Primes) do p:= Primes[i]; Qs:= select(q -> q < N/p, [seq(Primes[j],j=1..i-1)]); A:= A union {seq((2^(p*q)-1)/(2^p-1)/(2^q-1),q=Qs)}; od: A; # Robert Israel, Sep 02 2014
-
Mathematica
terms = 27; Clear[seq]; seq[m_] := seq[m] = Table[(2^(p q)-1)/((2^p-1) (2^q-1)), {q, Prime[Range[m]]}, {p, Prime[Range[PrimePi[q]+1, terms]]}] // Flatten // Union // PadRight[#, terms]&; seq[1]; seq[m=2]; While[seq[m] != seq[m-1], m++]; seq[m] (* Jean-François Alcover, Sep 17 2018 *)
Extensions
a(17) to a(27) from Robert Israel, Sep 03 2014
Comments