cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140803 Numbers of the form (2^(p*q)-1) /((2^p-1)*(2^q-1)), where p>q are primes.

Original entry on oeis.org

3, 11, 43, 151, 683, 2359, 2731, 43691, 174763, 599479, 2796203, 8727391, 9588151, 178956971, 715827883, 2454285751, 39268347319, 45812984491, 567767102431, 733007751851, 2932031007403, 10052678938039, 46912496118443, 145295143558111, 3002399751580331, 41175768098368951, 192153584101141163
Offset: 1

Views

Author

Vladimir Shevelev, Jul 15 2008, Jul 22 2008; corrected Sep 07 2008

Keywords

Comments

The sequence contains, in particular, A126614 (q=2) and A143012 (q=3).
If pq-1 is squarefree then the terms of the sequence are either primes or overpseudoprimes to base 2 (see A141232). In particular, they are strong pseudoprimes to base 2 (A001262).

Examples

			Entry 3 from (q=2,p=3), entry 11 from (q=2,p=5), entry 43 from (q=2,p=7), entry 151 from (q=3,p=5), entry 683 from (q=2,p=11).
		

Crossrefs

Programs

  • Maple
    N:= 100: # to use all (p,q) with p*q < N
    Primes:= select(isprime,[$2..floor(N/2)]):
    A:= {}:
    for i from 1 to nops(Primes) do
      p:= Primes[i];
      Qs:= select(q -> q < N/p, [seq(Primes[j],j=1..i-1)]);
      A:= A union {seq((2^(p*q)-1)/(2^p-1)/(2^q-1),q=Qs)};
    od:
    A; # Robert Israel, Sep 02 2014
  • Mathematica
    terms = 27; Clear[seq]; seq[m_] := seq[m] = Table[(2^(p q)-1)/((2^p-1) (2^q-1)), {q, Prime[Range[m]]}, {p, Prime[Range[PrimePi[q]+1, terms]]}] // Flatten // Union // PadRight[#, terms]&;
    seq[1]; seq[m=2]; While[seq[m] != seq[m-1], m++]; seq[m] (* Jean-François Alcover, Sep 17 2018 *)

Extensions

a(17) to a(27) from Robert Israel, Sep 03 2014