A140827 Interleave denominators and numerators of convergents to sqrt(3).
1, 1, 2, 3, 4, 7, 11, 15, 26, 41, 56, 97, 153, 209, 362, 571, 780, 1351, 2131, 2911, 5042, 7953, 10864, 18817, 29681, 40545, 70226, 110771, 151316, 262087, 413403, 564719, 978122, 1542841, 2107560, 3650401, 5757961, 7865521, 13623482, 21489003, 29354524, 50843527, 80198051, 109552575
Offset: 0
Examples
(1+r)^(2+12*q)=(-1)^q*(a(1+18*q)*(1+r^2)+a(2+18*q)*r). Here we write N = [d(k)d(k-1)...d(0)] for the 3-bin expansion of N. 0=[0], 1 =[1], 2=[10], 3=[100], 4=[1000], 5=[1001], 6=[1010], 7=[10000], 8=[10001], 9=[10010], 10=[10100], 11=[100000]. - _Michel Dekking_, Mar 11 2020
References
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Demontigny et al., Generalizing Zeckendorf's Theorem to f-decompositions, Journal of Number Theory 141, 135-158 (2014).
- Peter H. van der Kamp, Global classification of two-component approximately integrable evolution equations, arXiv:0710.2233 [nlin.SI], 2007-2008.
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997), 122-126.
- Index entries for linear recurrences with constant coefficients, signature (0,0,4,0,0,-1).
Programs
-
Maple
N:=100: a[0]:=1: a[1]:=1: for i from 2 to N do if i mod 3 = 1 then a[i]:=a[i-1]+a[i-3] else a[i]:=a[i-1]+a[i-2] fi od:
-
Mathematica
idnc[n_]:=Module[{cvrgts=Convergents[Sqrt[3],n],num,den},num=Take[ Numerator[ cvrgts],{2,-1,2}];den=Denominator[cvrgts]; Riffle[den, num,3]]; idnc[30] (* Harvey P. Dale, Mar 17 2012 *)
Comments