A140831 Numbers in whose canonical prime factorization the powers of the primes do not form an increasing sequence.
12, 24, 40, 45, 48, 56, 60, 63, 80, 84, 90, 96, 112, 120, 126, 132, 135, 144, 156, 160, 168, 175, 176, 180, 189, 192, 204, 208, 224, 228, 240, 252, 264, 270, 275, 276, 280, 288, 297, 300, 312, 315, 320, 325, 336, 348, 350, 351, 352, 360, 372, 378, 384, 405
Offset: 1
Examples
The prime factorization of 90 is, when arranged by size of the distinct primes, 2^1 * 3^2 * 5^1. Since 3^2 is > 5^1, even though 5 > 3, 90 is in the sequence.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
fQ[n_] := Block[{f = First@# ^ Last@# & /@ FactorInteger@n}, f != Sort@f]; Select[ Range@ 407, fQ@# &] (* Robert G. Wilson v, Aug 31 2008 *)
-
PARI
is(n) = { my(f = factor(n)); for(i = 1, #f~-1, if(f[i,1]^f[i,2] > f[i+1,1]^f[i+1,2], return(1) ) ); 0 } \\ David A. Corneth, Jun 16 2022
Extensions
More terms from Robert G. Wilson v, Aug 31 2008
Simpler name from Mike Jones, Jun 15 2022
Comments