A140868 a(n) = floor(floor(n*alpha)*alpha) where alpha = 1+sqrt(2) = A014176.
4, 9, 16, 21, 28, 33, 38, 45, 50, 57, 62, 67, 74, 79, 86, 91, 98, 103, 108, 115, 120, 127, 132, 137, 144, 149, 156, 161, 168, 173, 178, 185, 190, 197, 202, 207, 214, 219, 226, 231, 236, 243, 248, 255, 260, 267, 272, 277, 284, 289, 296, 301, 306, 313, 318, 325, 330, 337, 342, 347, 354, 359, 366, 371, 376, 383
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Shiri Artstein-Avidan, Aviezri S. Fraenkel and Vera T. Sos, A two-parameter family of an extension of Beatty, Discr. Math. 308 (2008), 4578-4588.
- Shiri Artstein-avidan, Aviezri S. Fraenkel and Vera T. Sos, A two-parameter family of an extension of Beatty sequences, Discrete Math., 308 (2008), 4578-4588.
- M. Dekking, Morphic words, Beatty sequences and integer images of the Fibonacci language, Theoretical Computer Science 809, 407-417 (2020).
Programs
-
Magma
[Round(Floor((1+Sqrt(2))*Floor(n*(1+Sqrt(2))))): n in [1..100]]; // G. C. Greubel, Sep 27 2018
-
Maple
Digits := 200: a014176:= 1+sqrt(2) : A140868 := proc(n) global a014176 ; floor(a014176*floor(n*a014176)) ; end: for n from 1 to 100 do printf("%d,",A140868(n)); end: # R. J. Mathar, Sep 05 2008
-
Mathematica
With[{p = 1+Sqrt[2]}, Table[Floor[p*Floor[n*p]], {n, 1, 100}]] (* G. C. Greubel, Sep 27 2018 *)
-
PARI
vector(100, n, round(floor((1+sqrt(2))*floor(n*(1+sqrt(2)))))) \\ G. C. Greubel, Sep 27 2018
-
Python
from sympy import integer_nthroot def A140868(n): f = lambda n: n+integer_nthroot(2*n**2,2)[0] return f(f(n)) # Chai Wah Wu, Mar 17 2021
Formula
Extensions
Corrected definition and extended by R. J. Mathar, Sep 05 2008
Comments