cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A267633 Expansion of (1 - 4t)/(1 - x + t x^2): a Fibonacci-type sequence of polynomials.

Original entry on oeis.org

1, -4, 1, -4, 1, -5, 4, 1, -6, 8, 1, -7, 13, -4, 1, -8, 19, -12, 1, -9, 26, -25, 4, 1, -10, 34, -44, 16, 1, -11, 43, -70, 41, -4, 1, -12, 53, -104, 85, -20, 1, -13, 64, -147, 155, -61, 4, 1, -14, 76, -200, 259, -146, 24
Offset: 0

Views

Author

Tom Copeland, Jan 18 2016

Keywords

Examples

			Row polynomials:
P(0,t) = 1 - 4t
P(1,t) = 1 - 4t = [-t(0) + (1-4t)] = -t(0) + P(0,t)
P(2,t) = 1 - 5t + 4t^2 = [-t(1-4t) + (1-4t)] = -t P(0,t) + P(1,t)
P(3,t) = 1 - 6t + 8t^2 = [-t(1-4t) + (1-5t+4t^2)] = -t P(1,t) + P(2,t)
P(4,t) = 1 - 7t + 13t^2 - 4t^3 = [-t(1-5t+4t^2) + (1-6t+8t^2)]
P(5,t) = 1 - 8t + 19t^2 - 12t^3 = [-t(1-6t+8t^2) + (1-7t+13t^2)]
P(6,t) = 1 - 9t + 26t^2 - 25t^3 + 4t^4
P(7,t) = 1 - 10t + 34t^2 - 44t^3 + 16t^4
P(8,t) = 1 - 11t + 43t^2 - 70t^3 + 41t^4 - 4t^5
P(9,t) = 1 - 12t + 53t^2 - 104t^3 + 85t^4 - 20t^5
P(10,t) = 1 - 13t + 64t^2 - 147t^3 + 155t^4 - 61t^5 + 4t^6
P(11,t) = 1 - 14t + 76t^2 - 200t^3 + 259t^4 - 146t^5 + 24t^6
...
Apparently: The odd rows for n>1 are reversed rows of A140882 (mod signs), and the even rows for n>0, the 9th, 15th, 21st, 27th, etc. rows of A228785 (mod signs). The diagonals are reverse rows of A202241.
		

Crossrefs

Programs

  • Mathematica
    p = (1 - 4 t) / (1 - x + t x^2) + O[x]^12 // CoefficientList[#, x] &;
    CoefficientList[#, t] & /@ p // Flatten (* Andrey Zabolotskiy, Mar 07 2024 *)

Formula

O.g.f. G(x,t) = (1 - 4t)/(1 - x + t x^2) = a / [t (x - (1+sqrt(a))/(2t))(x - (1-sqrt(a))/(2t))] with a = 1-4t.
Recursion P(n,t) = -t P(n-2,t) + P(n-1,t) with P(-1,t)=0 and P(0,t) = 1-4t.
Convolution of the Fibonacci polynomials of signed A011973 Fb(n,-t) with coefficients of (1-4t), e.g., (1-4t)Fb(5,-t) = (1-4t)(1-3t+t^2) = 1-7t+13t^2-4t^3, so, for n>=1 and k<=(n-1), T(n,k) = (-1)^k [-4*binomial(n-(k-1),k-1) - binomial(n-k,k)] with the convention that 1/(-m)! = 0 for m>=1, i.e., let binomial(n,k) = nint[n!/((k+c)!(n-k+c)!)] for c sufficiently small in magnitude.
Third column is A034856, and the fourth, A000297. Embedded in the coefficients of the highest order term of the polynomials is A008586 (cf. also A008574).
With P(0,t)=0, the o.g.f. is H(x,t) = (1-4t) x(1-tx)/[1-x(1-tx)] = (1-4t) Linv(Cinv(tx)/t), where Linv(x) = x/(1-x) with inverse L(x) = x/(1+x) and Cinv(x) = x (1-x) is the inverse of the o.g.f. of the shifted Catalan numbers A000108, C(x) = [1-sqrt(1-4x)]/2. Then Hinv(x,t) = C[t L(x/(1-4t))]/t = {1 - sqrt[1-4t(x/(1-4t))/[1+x/(1-4t)]]}/2t = {1-sqrt[1-4tx/(1-4t+x)]}/2t = 1/(1-4t) + (-1+t)/(1-4t)^2 x + (1-2t+2t^2)/(1-4t)^3 x^ + (-1+3t-6t^2+5t^3)/(1-4t)^4 + ..., where the numerators are the signed polynomials of A098474, reverse of A124644.
Row sums (t=1) are periodic -3,-3,0,3,3,0, repeat the six terms ... with o.g.f. -3 - 3x (1-x) / [1-x(1-x)]. Cf. A084103.
Unsigned row sums (t=-1) are shifted A022088 with o.g.f. 5 + 5x(1+x) / [x(1+x)].

Extensions

Data corrected by Andrey Zabolotskiy, Mar 07 2024

A228785 Table of coefficients of the algebraic number s(2*l+1) = 2*sin(Pi/(2*l+1)) as a polynomial in odd powers of rho(2*(2*l+1)) = 2*cos(Pi/(2*(2*l+1))) (reduced version).

Original entry on oeis.org

1, -3, 1, 5, -5, 1, -4, 5, -1, 9, -30, 27, -9, 1, -11, 55, -77, 44, -11, 1, 4, -13, 7, -1, -15, 140, -378, 450, -275, 90, -15, 1, 17, -204, 714, -1122, 935, -442, 119, -17, 1, -4, 25, -26, 9, -1, 0, 21, -385, 2079, -5148, 7007, -5733, 2940, -952, 189, -21, 1, -8, 126, -539, 967, -870, 429, -118, 17, -1, 0
Offset: 1

Views

Author

Wolfdieter Lang, Oct 07 2013

Keywords

Comments

In the regular (2*l+1)-gon, l >= 1, inscribed in a circle of radius R the length ratio side/R is s(2*l+1) = 2*sin(Pi/(2*l+1)). This can be written as a polynomial in the length ratio (smallest diagonal)/side in the (2*(2*l+1))-gon given by rho(2*(2*l+1)) = 2*cos(Pi/(2*(2*l+1))). This leads, in a first step, to the signed triangle A111125. Because of the minimal polynomial of the algebraic number rho(2*(2*l+1)) of degree delta(2*(2*l+1)) = A055034(2*(2*l+1)), called C(2*(2*l+1),x) (with coefficients given in A187360), one can eliminate all powers rho(2*(2*l+1))^k with k >= delta(2*(2*l+1)) by using C(2*(2*l+1),rho(2*(2*l+1))) = 0. This leads to the present table expressing s(2*(l+1)) in terms of odd powers of rho(2*(2*l+1)) with maximal exponent delta(2*(2*l+1))-1.
This table gives the coefficients of s(2*l+1), related to the (2*l+1)-gon, in the power basis of the algebraic number field Q(rho(2*(2*l+1))) of degree delta(2*(2*l+1)), related to rho from the (2*(2*l+1))-gon, provided one inserts zeros for the even powers, starting each row with a zero and filling zeros at the end in order to obtain the row length delta(2*(2*l+1)). Note that some trailing zeros in the present table (e.g., row l = 10) have been given such that the row length for the s(2*l+1) coefficients in the power basis Q(rho(2*(2*l+1))) becomes just twice the one of this table.
Thanks go to Seppo Mustonen for telling me about his findings regarding the square of the sum of all length in the regular n-gon, which led me to consider this entry (even though for odd n this is not needed because only s(2*l+1)^2 = 4 - rho(2*l+1)^2 enters).

Examples

			The table a(l,m), with n = 2*l+1, begins:
n,   l \m  0    1     2     3    4     5    6    7   8   9 10
3,   1:    1
5,   2:   -3    1
7,   3:    5   -5     1
9,   4:   -4    5    -1
11,  5:    9  -30    27    -9    1
13,  6:  -11   55   -77    44  -11     1
15,  7:    4  -13     7    -1
17,  8:  -15  140  -378   450 -275    90  -15    1
19,  9:   17 -204   714 -1122  935  -442  119  -17   1
21, 10:   -4   25   -26     9   -1     0
23, 11:   21 -385  2079 -5148 7007 -5733 2940 -952 189 -21  1
25, 12:   -8  126  -539   967 -870   429 -118   17  -1   0
27, 13:    4  -41    70   -43   11    -1    0    0   0
...
n = 29 l =  14:  -27, 819, -7371, 30888, -72930, 107406, -104652, 69768, -32319, 10395, -2277, 324, -27, 1.
n = 5, l=2: s(5) = -3*rho(10) + rho(10)^3 = (tau - 1)*sqrt(2 + tau), approximately 1.175570504, where tau = (1 + sqrt(5))/2 (golden section).
n = 17, l = 8: s(17) = -15*x + 140*x^3 - 378*x^5 + 450*x^7 - 275*x^9 + 90*x^11 - 15*x^13 + 1*x^15, with x = rho(34) = 2*cos(Pi/34). s(17) is approximately 0.3674990356. With the length row l = 8 the degree of the algebraic number s(17) = 2*sin(Pi/17) is therefore 2*8 = 16. See A228787 for the decimal expansion of s(17) and A228788 for the one of rho(34).
		

Crossrefs

Cf. A055034, A187360, A228783 (even n case), A228786 (minimal polynomials).

Formula

a(l,m) = [x^(2*m+1)](s(2*l+1,x)(mod C(2*(2l+1),x))), with s(2*l+1,x) = sum((-1)^(l-1-s)* A111125(l1,s)*x^(2*s+1), s=0..l-1), l >= 1, m=0, ..., (delta(2*(2*l+1))/2 - 1), with delta(n) = A055034(n).
Rows 9,15,21,27 are coefficients of polynomials in reciprocal powers of u for rows n=2,4,6,8 generated by the o.g.f. (u-4)/(u-ux+x^2) of A267633. These polynomials in u occur in a moving average of the polynomials of A140882 interlaced with these polynomials. - Tom Copeland, Jan 16 2016
Showing 1-2 of 2 results.