A140883 Triangle T(n,k) = A053120(n,k)+A053120(n,n-k) of symmetrized Chebyshev coefficients, read by rows, 0<=k<=n.
2, 1, 1, 1, 0, 1, 4, -3, -3, 4, 9, 0, -16, 0, 9, 16, 5, -20, -20, 5, 16, 31, 0, -30, 0, -30, 0, 31, 64, -7, -112, 56, 56, -112, -7, 64, 129, 0, -288, 0, 320, 0, -288, 0, 129, 256, 9, -576, -120, 432, 432, -120, -576, 9, 256, 511, 0, -1230, 0, 720, 0, 720, 0, -1230, 0, 511
Offset: 0
Examples
2; 1, 1; 1, 0, 1; 4, -3, -3, 4; 9, 0, -16, 0, 9; 16, 5, -20, -20, 5, 16; 31, 0, -30, 0, -30, 0, 31; 64, -7, -112, 56, 56, -112, -7, 64; 129, 0, -288, 0, 320, 0, -288, 0, 129; 256, 9, -576, -120, 432, 432, -120, -576, 9, 256; 511, 0, -1230, 0, 720, 0, 720, 0, -1230, 0, 511;
Crossrefs
Cf. A053120.
Programs
-
Mathematica
Clear[p, x, n, m, a]; p[x_, n_] := ChebyshevT[n, x] + ExpandAll[x^n*ChebyshevT[n, 1/x]]; Table[p[x, n], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a]
Formula
T(n,k) = T(n,n-k).
Comments