cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140894 Triangle T(n,k) = sum_{0<=j<=k/2} A034867(k,j)*prime(n)^j, read by rows, 0<=k

Original entry on oeis.org

1, 1, 2, 1, 2, 8, 1, 2, 10, 32, 1, 2, 14, 48, 236, 1, 2, 16, 56, 304, 1280, 1, 2, 20, 72, 464, 2080, 11584, 1, 2, 22, 80, 556, 2552, 15112, 76160, 1, 2, 26, 96, 764, 3640, 24088, 128256, 786448, 1, 2, 32, 120, 1136, 5632, 43072, 243840, 1693696, 10214912
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Jul 23 2008

Keywords

Comments

Row sums are 1, 3, 11, 45, 301, 1659, 14223, 94485, 943321, 12202443...

Examples

			1;
1, 2;
1, 2, 8;
1, 2, 10, 32;
1, 2, 14, 48, 236;
1, 2, 16, 56, 304, 1280;
1, 2, 20, 72, 464, 2080, 11584;
1, 2, 22, 80, 556, 2552, 15112, 76160;
1, 2, 26, 96, 764, 3640, 24088, 128256, 786448;
1, 2, 32, 120, 1136, 5632, 43072, 243840, 1693696, 10214912;
		

Crossrefs

Cf. A117809.

Programs

  • Mathematica
    Binet[n_, m_] := (((1 + Sqrt[Prime[n]]))^m - (( 1 - Sqrt[Prime[n]]))^m)/(2*Sqrt[Prime[n]]); a = Table[Table[ExpandAll[Binet[n, m]], {m, 1, n}], {n, 1, 10}] Flatten[a]

Formula

T(n,m)=( (1+sqrt prime(n))^m - (1-sqrt prime(n))^m) / (2*sqrt prime(n)).