A140894
Triangle T(n,k) = sum_{0<=j<=k/2} A034867(k,j)*prime(n)^j, read by rows, 0<=k
1, 1, 2, 1, 2, 8, 1, 2, 10, 32, 1, 2, 14, 48, 236, 1, 2, 16, 56, 304, 1280, 1, 2, 20, 72, 464, 2080, 11584, 1, 2, 22, 80, 556, 2552, 15112, 76160, 1, 2, 26, 96, 764, 3640, 24088, 128256, 786448, 1, 2, 32, 120, 1136, 5632, 43072, 243840, 1693696, 10214912
Offset: 1
Examples
1; 1, 2; 1, 2, 8; 1, 2, 10, 32; 1, 2, 14, 48, 236; 1, 2, 16, 56, 304, 1280; 1, 2, 20, 72, 464, 2080, 11584; 1, 2, 22, 80, 556, 2552, 15112, 76160; 1, 2, 26, 96, 764, 3640, 24088, 128256, 786448; 1, 2, 32, 120, 1136, 5632, 43072, 243840, 1693696, 10214912;
Crossrefs
Cf. A117809.
Programs
-
Mathematica
Binet[n_, m_] := (((1 + Sqrt[Prime[n]]))^m - (( 1 - Sqrt[Prime[n]]))^m)/(2*Sqrt[Prime[n]]); a = Table[Table[ExpandAll[Binet[n, m]], {m, 1, n}], {n, 1, 10}] Flatten[a]
Formula
T(n,m)=( (1+sqrt prime(n))^m - (1-sqrt prime(n))^m) / (2*sqrt prime(n)).
Comments