A140895 A Lucas-Binet triangle read by rows: t(n,m)=((( 1 + Sqrt[Prime[n]]))^m + (( 1 - Sqrt[Prime[n]]))^m)/2.
1, 1, 4, 1, 6, 16, 1, 8, 22, 92, 1, 12, 34, 188, 716, 1, 14, 40, 248, 976, 4928, 1, 18, 52, 392, 1616, 9504, 44864, 1, 20, 58, 476, 1996, 12560, 61048, 348176, 1, 24, 70, 668, 2876, 20448, 104168, 658192, 3608080, 1, 30, 88, 1016, 4496, 37440, 200768
Offset: 1
Examples
{1}, {1, 4}, {1, 6, 16}, {1, 8, 22, 92}, {1, 12, 34, 188, 716}, {1, 14, 40, 248, 976, 4928}, {1, 18, 52, 392, 1616, 9504, 44864}, {1, 20, 58, 476, 1996, 12560, 61048, 348176}, {1, 24, 70, 668, 2876, 20448, 104168, 658192, 3608080}, {1, 30, 88, 1016, 4496, 37440, 200768, 1449856, 8521216, 57638400}
References
- Arthur Benjamin and Jennifer J. Quinn, Fibonacci and Lucas Identities through Colored Tilings, Utilitas Mathematica, Vol 56, pp. 137-142, November, 1999. http://www.math.hmc.edu/~benjamin/papers.html
Programs
-
Mathematica
Binet[n_, m_] = ((( 1 + Sqrt[Prime[n]]))^m + (( 1 - Sqrt[Prime[n]]))^m)/2; a = Table[Table[ExpandAll[Binet[n, m]], {m, 1, n}], {n, 1, 10}]; Flatten[a]
Formula
t(n,m)=((( 1 + Sqrt[Prime[n]]))^m + (( 1 - Sqrt[Prime[n]]))^m)/2.
Extensions
Edited by N. J. A. Sloane, Aug 01 2008
Comments