cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140895 A Lucas-Binet triangle read by rows: t(n,m)=((( 1 + Sqrt[Prime[n]]))^m + (( 1 - Sqrt[Prime[n]]))^m)/2.

Original entry on oeis.org

1, 1, 4, 1, 6, 16, 1, 8, 22, 92, 1, 12, 34, 188, 716, 1, 14, 40, 248, 976, 4928, 1, 18, 52, 392, 1616, 9504, 44864, 1, 20, 58, 476, 1996, 12560, 61048, 348176, 1, 24, 70, 668, 2876, 20448, 104168, 658192, 3608080, 1, 30, 88, 1016, 4496, 37440, 200768
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Jul 23 2008

Keywords

Comments

Row sums are: {1, 5, 23, 123, 951, 6207, 56447, 424335, 4394527, 67853311, ...}.

Examples

			{1},
{1, 4},
{1, 6, 16},
{1, 8, 22, 92},
{1, 12, 34, 188, 716},
{1, 14, 40, 248, 976, 4928},
{1, 18, 52, 392, 1616, 9504, 44864},
{1, 20, 58, 476, 1996, 12560, 61048, 348176},
{1, 24, 70, 668, 2876, 20448, 104168, 658192, 3608080},
{1, 30, 88, 1016, 4496, 37440, 200768, 1449856, 8521216, 57638400}
		

References

  • Arthur Benjamin and Jennifer J. Quinn, Fibonacci and Lucas Identities through Colored Tilings, Utilitas Mathematica, Vol 56, pp. 137-142, November, 1999. http://www.math.hmc.edu/~benjamin/papers.html

Programs

  • Mathematica
    Binet[n_, m_] = ((( 1 + Sqrt[Prime[n]]))^m + (( 1 - Sqrt[Prime[n]]))^m)/2; a = Table[Table[ExpandAll[Binet[n, m]], {m, 1, n}], {n, 1, 10}]; Flatten[a]

Formula

t(n,m)=((( 1 + Sqrt[Prime[n]]))^m + (( 1 - Sqrt[Prime[n]]))^m)/2.

Extensions

Edited by N. J. A. Sloane, Aug 01 2008