A140934 Number of 2 X 11 matrices with elements in 0..n with each row and each column in nondecreasing order. 2,11,n can be permuted, see formula.
1, 78, 2366, 41405, 496860, 4504864, 32821152, 200443464, 1057896060, 4936848280, 20734762776, 79483257308, 281248448936, 927192688800, 2869882132000, 8394405236100, 23331508670925, 61912369414350, 157496378334750, 385451662766625, 910400117772600
Offset: 0
Keywords
References
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; Prop. 8.4, case n=13. - N. J. A. Sloane, Aug 28 2010.
Links
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 1, 3, 25, 27.
Formula
Empirical: Set p,q,r to n,11,2 (in any order) in s=p+q+r-1; a(n) = product {i in 0..r-1} (binomial(s,p+i)*i!/(s-i)^(r-i-1))
G.f. conjectured: (1 + 55*x + 825*x^2 + 4950*x^3 + 13860*x^4 + 19404*x^5 + 13860*x^6 + 4950*x^7 + 825*x^8 + 55*x^9 + x^10)/(1 - x)^23. - Bruno Berselli, May 07 2012
Conjecture: a(n) = ((n+12)/(12*n+12))*binomial(n+11,11)^2. - Bruno Berselli, May 07 2012
From Amiram Eldar, Oct 19 2020: (Start)
Conjecture: Sum_{n>=0} 1/a(n) = 3538258540001/8820 - 40646320*Pi^2.
Conjecture: Sum_{n>=0} (-1)^n/a(n) = 1678950598/2205 - 23068672*log(2)/21. (End)
Comments