cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140934 Number of 2 X 11 matrices with elements in 0..n with each row and each column in nondecreasing order. 2,11,n can be permuted, see formula.

Original entry on oeis.org

1, 78, 2366, 41405, 496860, 4504864, 32821152, 200443464, 1057896060, 4936848280, 20734762776, 79483257308, 281248448936, 927192688800, 2869882132000, 8394405236100, 23331508670925, 61912369414350, 157496378334750, 385451662766625, 910400117772600
Offset: 0

Views

Author

R. H. Hardin, Jul 05 2008

Keywords

Comments

In the definition, 2,11,n can be permuted, see formula.
Conjecture: 12th column (and diagonal) of the triangle A001263. - Bruno Berselli, May 07 2012

References

  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; Prop. 8.4, case n=13. - N. J. A. Sloane, Aug 28 2010.

Crossrefs

Formula

Empirical: Set p,q,r to n,11,2 (in any order) in s=p+q+r-1; a(n) = product {i in 0..r-1} (binomial(s,p+i)*i!/(s-i)^(r-i-1))
G.f. conjectured: (1 + 55*x + 825*x^2 + 4950*x^3 + 13860*x^4 + 19404*x^5 + 13860*x^6 + 4950*x^7 + 825*x^8 + 55*x^9 + x^10)/(1 - x)^23. - Bruno Berselli, May 07 2012
Conjecture: a(n) = ((n+12)/(12*n+12))*binomial(n+11,11)^2. - Bruno Berselli, May 07 2012
Conjecture: a(n) = Product_{i=1..11} A002378(n+i)/A002378(i). - Bruno Berselli, Sep 01 2016
From Amiram Eldar, Oct 19 2020: (Start)
Conjecture: Sum_{n>=0} 1/a(n) = 3538258540001/8820 - 40646320*Pi^2.
Conjecture: Sum_{n>=0} (-1)^n/a(n) = 1678950598/2205 - 23068672*log(2)/21. (End)