Original entry on oeis.org
1, -3, -1, 5, -6, 3, -11, 10, -12, -5, 21, -22, 20, -24, 11, -43, 42, -44, 40, -48, -21, 85, -86, 84, -88, 80, -96, 43, -171, 170, -172, 168, -176, 160, -192, -85, 341, -342, 340, -344, 336, -352, 320, -384, 171, -683, 682, -684, 680, -688
Offset: 0
Cf.
A000096,
A000217,
A005015,
A001045,
A007283,
A020988,
A077925,
A078008,
A140503,
A146523,
A151575,
A175805,
A084247.
-
T[0, 0] = 0; T[1, 0] = T[0, 1] = 1; T[0, n_] := T[0, n] = T[0, n - 1] + 2*T[0, n - 2]; T[d_, d_] = 0; T[d_, n_] := T[d, n] = T[d - 1, n + 1] - T[d - 1, n]; A140944 = Table[T[d, n], {d, 0, 10}, {n, 0, d}] // Flatten; a[n_] := A140944[[n + 2]] - 3*A140944[[n + 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 18 2014 *)
A140503
Triangle T(d,n) read by rows, the n-th term of the d-th differences of the Jacobsthal sequence A001045.
Original entry on oeis.org
1, -1, 2, 3, -2, 4, -5, 6, -4, 8, 11, -10, 12, -8, 16, -21, 22, -20, 24, -16, 32, 43, -42, 44, -40, 48, -32, 64, -85, 86, -84, 88, -80, 96, -64, 128, 171, -170, 172, -168, 176, -160, 192, -128, 256, -341, 342, -340, 344, -336, 352, -320, 384, -256, 512, 683, -682, 684, -680
Offset: 1
A001045 and its d times iterated differences are
.0,.1,.1,.3,.5,11,21,43,...
.1,.0,.2,.2,.6,10,22,... < d=1
-1,.2,.0,.4,.4,12,... < d=2
.3,-2,.4,.0,.8,.. < d=3
-5,.6,-4,.8,.0,...
The sequence contains the first d elements of the d-th row, those up to the diagonal (which contains zeros).
A140946
Triangle T(n,k) = (-2)^n*(-1)^k if kA001045(n+1).
Original entry on oeis.org
1, -2, -1, 4, -4, 3, -8, 8, -8, -5, 16, -16, 16, -16, 11, -32, 32, -32, 32, -32, -21, 64, -64, 64, -64, 64, -64, 43, -128, 128, -128, 128, -128, 128, -128, -85, 256, -256, 256, -256, 256, -256, 256, -256, 171, -512, 512, -512, 512, -512, 512, -512, 512, -512, -341, 1024, -1024, 1024, -1024, 1024
Offset: 0
1;
-2,-1;
4,-4,3;
-8,8,-8,-5;
16,-16,16,-16,11;
-32,32,-32,32,-32,-21;
64,-64,64,-64,64,-64,43;
-128,128,-128,128,-128,128,-128,-85;
-
(* A = A140944 *) A[0, 0] = 0; A[1, 0] = A[0, 1] = 1; A[0, k_] := A[0, k] = A[0, k-1] + 2*A[0, k-2]; A[n_, n_] = 0; A[n_, k_] := A[n, k] = A[n-1, k+1] - A[n-1, k]; T[n_, n_] := T[n, n] = A[n+1, 0] - 2*A[n, n]; T[n_, k_] := T[n, k] = A[n, k+1] - 2*A[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 17 2014 *)
Showing 1-3 of 3 results.
Comments