cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140945 Triangle read by rows: counts series-parallel networks by the number of series connections.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 25, 25, 1, 1, 90, 290, 90, 1, 1, 301, 2450, 2450, 301, 1, 1, 966, 17451, 41580, 17451, 966, 1, 1, 3025, 112035, 544971, 544971, 112035, 3025, 1, 1, 9330, 671980, 6076350, 12122502, 6076350, 671980, 9330, 1, 1, 28501, 3846700, 60738700, 217523922, 217523922, 60738700, 3846700, 28501, 1
Offset: 1

Views

Author

Brian Drake, Jul 24 2008

Keywords

Comments

T(n,k) is the number of series-parallel matroids on [n+1] of rank k. - Andrew Howroyd, Mar 08 2023

Examples

			Triangle begins:
  1;
  1,   1;
  1,   6,     1;
  1,  25,    25,     1;
  1,  90,   290,    90,     1;
  1, 301,  2450,  2450,   301,   1;
  1, 966, 17451, 41580, 17451, 966, 1;
  ...
		

Crossrefs

Row sums are A006351.
Second column is A000392.
Cf. A359985.

Programs

  • Maple
    N:=6: 1/a*log(1+a*y)+1*log(1+b*y)/b-y=x: solve(%, y):series(%, x, N): simplify(%, symbolic): convert(%, polynom): subs(b=1, %): R:= [seq(i!*coeff(%, x, i), i=1..N-1)]: seq( seq(coeff(R[i], a, j), j=0..i-1), i=1..N-1);
  • PARI
    T(n) = {[Vecrev(p) | p<-Vec(serlaplace(intformal(serreverse(log(1 + x*y + O(x*x^n))/y + log(1 + x + O(x*x^n)) - x))))]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) }  \\ Andrew Howroyd, Mar 08 2023

Formula

E.g.f. is reversion of log(1+ax)/a+log(1+bx)/b-x.
Let f(x,t) = (1+x)*(1+x*t)/(1-x^2*t) and let D be the operator f(x,t)*d/dx. Then the n-th row polynomial equals (D^n)(f(x,t)) evaluated at x = 0. - Peter Bala, Sep 29 2011