cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140950 a(n) = A140944(n+1) - 3*A140944(n).

Original entry on oeis.org

1, -3, -1, 5, -6, 3, -11, 10, -12, -5, 21, -22, 20, -24, 11, -43, 42, -44, 40, -48, -21, 85, -86, 84, -88, 80, -96, 43, -171, 170, -172, 168, -176, 160, -192, -85, 341, -342, 340, -344, 336, -352, 320, -384, 171, -683, 682, -684, 680, -688
Offset: 0

Views

Author

Paul Curtz, Jul 25 2008

Keywords

Comments

Jacobsthal numbers appear twice: 1) A001045(n+2) signed, terms 0, 1, 3, 6, 10 (A000217); 2) A001045(n+1) signed, terms 0, 2, 5, 9 (n*(n+3)/2=A000096); between them are -3; 5, -6; -11, 10, -12; which appear (opposite sign) by rows in A140503 (1, -1, 2, 3, -2, 4) square.
Consider the permutation of the nonnegative numbers
0, 2, 5, 9, 14, 20, 27,
1, 3, 6, 10, 15, 21, 28,
4, 7, 11, 16, 22, 29,
8, 12, 17, 23, 30,
13, 18, 24, 31,
19, 25, 32,
26, 33,
34, etc.
The corresponding distribution of a(n) is
1, -1, 3, -5, 11, -21, 43,
-3, 5, -11, 21, -43, 85, -171,
-6, 10, -22, 42, -86, 170,
-12, 20, -44, 84, -172,
-24, 40, -88, 168,
-48, 80, -176,
-96, 160,
-192, etc.
Column sums: -2, -2, -10, -10, -42, -42, -170, ... duplicate of a bisection of -A078008(n+2).
b(n)= 1, -1, 3, -5, 11, 21, ... = (-1)^n*A001045(n+1) = A077925(n). Every row is b(n) or b(n+2) multiplied by 1, -1, -2, -4, -8, -16, ..., essentially -A011782(n).

Crossrefs

Programs

  • Mathematica
    T[0, 0] = 0; T[1, 0] = T[0, 1] = 1; T[0, n_] := T[0, n] = T[0, n - 1] + 2*T[0, n - 2]; T[d_, d_] = 0; T[d_, n_] := T[d, n] = T[d - 1, n + 1] - T[d - 1, n]; A140944 = Table[T[d, n], {d, 0, 10}, {n, 0, d}] // Flatten; a[n_] := A140944[[n + 2]] - 3*A140944[[n + 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 18 2014 *)

Extensions

More terms and a(19)=-48 instead of 42 corrected by Jean-François Alcover, Dec 22 2014