cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140993 Triangle G(n, k) read by rows, for 1 <= k <= n, where G(n, n) = G(n+1, 1) = 1, G(n+2, 2) = 2, G(n+3, m) = G(n+1, m-1) + G(n+1, m-2) + G(n+2, m-1) for n >= 1 and m = 3..(n+2).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 7, 1, 1, 2, 5, 11, 12, 1, 1, 2, 5, 12, 23, 20, 1, 1, 2, 5, 12, 28, 46, 33, 1, 1, 2, 5, 12, 29, 63, 89, 54, 1, 1, 2, 5, 12, 29, 69, 137, 168, 88, 1, 1, 2, 5, 12, 29, 70, 161, 289, 311, 143, 1, 1, 2, 5, 12, 29, 70, 168, 367, 594, 567, 232, 1, 1, 2, 5, 12, 29, 70, 169, 399, 817, 1194, 1021, 376, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 08 2008

Keywords

Comments

From Petros Hadjicostas, Jun 10 2019: (Start)
Let b(m) = lim_{n -> infinity} G(n, m) for each m >= 1. Then b(1) = 1, b(2) = 2, and b(m) = 2*b(m-1) + b(m-2) for m >= 3. (The existence of the limit can be proved by induction on m.) This means b(m) = A000129(m) for m >= 1 (known as the Pell numbers).
If we want to get the second main diagonal, we let c(n) = G(n+1, n) for n >= 1. Then c(n+2) = G(n+3, n+2) = G(n+1, n+1) + G(n+1, n) + G(n+2, n+1) = 1 + c(n) + c(n+1) with c(1) = G(2, 1) = 1 and c(2) = G(3, 2) = 2, which implies that c(n) = A000071(n+2) = Fibonacci(n+2) - 1 for n >= 1.
This array is the mirror image of A140998 (except for a shifting of the indices by 1). Thus, G(n, k) = A140998(n - 1, n - k) for 1 <= k <= n. This array has index of obliqueness e = 1, while array A140998 has index of obliqueness e = 0. Both arrays have the same index of asymmetry (s = 1). (End)
From Petros Hadjicostas, Feb 09 2021: (Start)
One of the two rectangular versions, say (RA(n,k): n,k >= 0), of this triangular array (G(n,k): 1 <= k <= n) is given by RA(n,k) = G(n+k-1,k) for n,k >= 1. Conversely, G(n,k) = RA(n-k+1, k) for 1 <= k <= n. (This assumes that the triangle G(n,k) is read from the array RA(n,k) by ascending antidiagonals.)
Note that [o.g.f of RA](x,y) = x*[o.g.f. of G](x, y/x) and [o.g.f of G](x,y) = x^(-1)*[o.g.f of RA](x,x*y).
The other rectangular version, say (RD(n,k): n,k >= 0), of this triangular array (G(n,k): 1 <= k <= n) is given by RD(n,k) = RA(k,n) = G(n+k-1,n) for n,k >= 1. Conversely, G(n,k) = RD(k,n-k+1) for 1 <= k <= n. (This assumes that the triangle G(n,k) is read from the array RD(n,k) by descending antidiagonals.)
Note that [o.g.f of RD](x,y) = y*[o.g.f. of G](y,x/y) and [o.g.f of G](x,y) = x^(-1)*[o.g.f of RD](x*y, x). (End)

Examples

			Triangle G(n,k) (with rows for n >= 1 and columns for 1 <= k <= n) begins:
  1
  1 1
  1 2 1
  1 2 4  1
  1 2 5  7  1
  1 2 5 11 12  1
  1 2 5 12 23 20   1
  1 2 5 12 28 46  33   1
  1 2 5 12 29 63  89  54   1
  1 2 5 12 29 69 137 168  88    1
  1 2 5 12 29 70 161 289 311  143    1
  1 2 5 12 29 70 168 367 594  567  232    1
  1 2 5 12 29 70 169 399 817 1194 1021  376   1
  1 2 5 12 29 70 169 407 934 1778 2355 1820 609 1
  ...
From _Petros Hadjicostas_, Feb 09 2021: (Start)
Rectangular array RA(n,k) (with rows for n >= 1 and columns for k >= 1) begins:
  1, 1, 1,  1,  1,  1,   1,   1,   1,    1, ...
  1, 2, 4,  7, 12, 20,  33,  54,  88,  143, ...
  1, 2, 5, 11, 23, 46,  89, 168, 311,  567, ...
  1, 2, 5, 12, 28, 63, 137, 289, 594, 1194, ...
  1, 2, 5, 12, 29, 69, 161, 367, 817, 1778, ...
  1, 2, 5, 12, 29, 70, 168, 399, 934, 2150, ...
  1, 2, 5, 12, 29, 70, 169, 407, 975, 2316, ...
  1, 2, 5, 12, 29, 70, 169, 408, 984, 2367, ...
  1, 2, 5, 12, 29, 70, 169, 408, 985, 2377, ...
  1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, ...
  ...
Reading the array RA(n,k) by ascending antidiagonals, we get triangle G(n,k) above. (End)
		

Crossrefs

Programs

  • Maple
    A140993 := proc(n,k) if k = n then 1; elif k = 1 then 1; elif k = 2 then 2; else procname(n-2,k-1)+procname(n-2,k-2)+procname(n-1,k-1) ; end if; end proc: seq(seq(A140993(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Apr 28 2010
  • Mathematica
    t[n_, k_] := If[k == n, 1, If[k == 1, 1, If[k == 2, 2, t[n - 2, k - 1] + t[n - 2, k - 2] + t[n - 1, k - 1]]]]; Flatten[Table[ t[n, k], {n, 13}, {k, n}]] (* Robert G. Wilson v, Dec 22 2011 *)

Formula

From Petros Hadjicostas, Jun 10 2019: (Start)
G(n, k) = A140998(n - 1, n - k) for 1 <= k <= n.
Bivariate o.g.f.: Sum_{n >= 1, k >= 1} G(n, k)*x^n*y^k = x*y*(1 - x*y -x^2*y^2 + x^3*y^2)/((1 - x) * (1 - x*y) * (1 - x*y - x^2*y - x^2*y^2)). (Here, we let G(n, k) = 0 when 1 <= n < k.)
To get the row sums, we let y = 1 in the above bivariate g.f. and simplify. We get x/(1 - 2*x), which is the g.f. of sequence (A000079(n-1): n >= 1) = (2^(n-1): n >= 1). (End)
From Petros Hadjicostas, Feb 10 2021: (Start)
We give formulas about the rectangular array RA(n,k).
Initial conditions: RA(1,n) = RA(n+1,1) = 1 and RA(n+1,2) = 2 for n >= 1.
Recurrence: RA(n,k) = RA(n-1,k-1) + RA(n,k-2) + RA(n,k-1) for n >= 2 and k >= 3.
The main diagonal of the array is RA(n,n) = A000129(n) (Pell numbers).
Bivariate o.g.f: Sum_{n,k >= 1} RA(n,m)*x^n*y^k = x*y*(x*y^2 - y^2 - y + 1)/((1 - x)*(1 - y)*(-x*y - y^2 - y + 1)).
To obtain formulas about the other rectangular array, RD(n,k), we use the equations RD(n,k) = RA(k,n) for n,k >= 1 and [o.g.f. of RD](x,y) = [o.g.f. of RA](y,x). (End)

Extensions

Entries checked by R. J. Mathar, Apr 28 2010
Name and offset edited by Petros Hadjicostas, Jun 10 2019