A140993 Triangle G(n, k) read by rows, for 1 <= k <= n, where G(n, n) = G(n+1, 1) = 1, G(n+2, 2) = 2, G(n+3, m) = G(n+1, m-1) + G(n+1, m-2) + G(n+2, m-1) for n >= 1 and m = 3..(n+2).
1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 7, 1, 1, 2, 5, 11, 12, 1, 1, 2, 5, 12, 23, 20, 1, 1, 2, 5, 12, 28, 46, 33, 1, 1, 2, 5, 12, 29, 63, 89, 54, 1, 1, 2, 5, 12, 29, 69, 137, 168, 88, 1, 1, 2, 5, 12, 29, 70, 161, 289, 311, 143, 1, 1, 2, 5, 12, 29, 70, 168, 367, 594, 567, 232, 1, 1, 2, 5, 12, 29, 70, 169, 399, 817, 1194, 1021, 376, 1
Offset: 1
Examples
Triangle G(n,k) (with rows for n >= 1 and columns for 1 <= k <= n) begins: 1 1 1 1 2 1 1 2 4 1 1 2 5 7 1 1 2 5 11 12 1 1 2 5 12 23 20 1 1 2 5 12 28 46 33 1 1 2 5 12 29 63 89 54 1 1 2 5 12 29 69 137 168 88 1 1 2 5 12 29 70 161 289 311 143 1 1 2 5 12 29 70 168 367 594 567 232 1 1 2 5 12 29 70 169 399 817 1194 1021 376 1 1 2 5 12 29 70 169 407 934 1778 2355 1820 609 1 ... From _Petros Hadjicostas_, Feb 09 2021: (Start) Rectangular array RA(n,k) (with rows for n >= 1 and columns for k >= 1) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, ... 1, 2, 5, 11, 23, 46, 89, 168, 311, 567, ... 1, 2, 5, 12, 28, 63, 137, 289, 594, 1194, ... 1, 2, 5, 12, 29, 69, 161, 367, 817, 1778, ... 1, 2, 5, 12, 29, 70, 168, 399, 934, 2150, ... 1, 2, 5, 12, 29, 70, 169, 407, 975, 2316, ... 1, 2, 5, 12, 29, 70, 169, 408, 984, 2367, ... 1, 2, 5, 12, 29, 70, 169, 408, 985, 2377, ... 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, ... ... Reading the array RA(n,k) by ascending antidiagonals, we get triangle G(n,k) above. (End)
Links
- Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
Crossrefs
Programs
-
Maple
A140993 := proc(n,k) if k = n then 1; elif k = 1 then 1; elif k = 2 then 2; else procname(n-2,k-1)+procname(n-2,k-2)+procname(n-1,k-1) ; end if; end proc: seq(seq(A140993(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Apr 28 2010
-
Mathematica
t[n_, k_] := If[k == n, 1, If[k == 1, 1, If[k == 2, 2, t[n - 2, k - 1] + t[n - 2, k - 2] + t[n - 1, k - 1]]]]; Flatten[Table[ t[n, k], {n, 13}, {k, n}]] (* Robert G. Wilson v, Dec 22 2011 *)
Formula
From Petros Hadjicostas, Jun 10 2019: (Start)
G(n, k) = A140998(n - 1, n - k) for 1 <= k <= n.
Bivariate o.g.f.: Sum_{n >= 1, k >= 1} G(n, k)*x^n*y^k = x*y*(1 - x*y -x^2*y^2 + x^3*y^2)/((1 - x) * (1 - x*y) * (1 - x*y - x^2*y - x^2*y^2)). (Here, we let G(n, k) = 0 when 1 <= n < k.)
To get the row sums, we let y = 1 in the above bivariate g.f. and simplify. We get x/(1 - 2*x), which is the g.f. of sequence (A000079(n-1): n >= 1) = (2^(n-1): n >= 1). (End)
From Petros Hadjicostas, Feb 10 2021: (Start)
We give formulas about the rectangular array RA(n,k).
Initial conditions: RA(1,n) = RA(n+1,1) = 1 and RA(n+1,2) = 2 for n >= 1.
Recurrence: RA(n,k) = RA(n-1,k-1) + RA(n,k-2) + RA(n,k-1) for n >= 2 and k >= 3.
The main diagonal of the array is RA(n,n) = A000129(n) (Pell numbers).
Bivariate o.g.f: Sum_{n,k >= 1} RA(n,m)*x^n*y^k = x*y*(x*y^2 - y^2 - y + 1)/((1 - x)*(1 - y)*(-x*y - y^2 - y + 1)).
To obtain formulas about the other rectangular array, RD(n,k), we use the equations RD(n,k) = RA(k,n) for n,k >= 1 and [o.g.f. of RD](x,y) = [o.g.f. of RA](y,x). (End)
Extensions
Entries checked by R. J. Mathar, Apr 28 2010
Name and offset edited by Petros Hadjicostas, Jun 10 2019
Comments