A140994 Triangle G(n, k), for 0 <= k <= n, read by rows, where G(n, n) = G(n+1, 0) = 1, G(n+2, 1) = 2, G(n+3, 2) = 4, G(n+4, m) = G(n+1, m-2) + G(n+1, m-3) + G(n+2, m-2) + G(n+3, m-1) for n >= 0 and m = 3..(n+3).
1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, 1, 1, 2, 4, 9, 15, 1, 1, 2, 4, 9, 19, 28, 1, 1, 2, 4, 9, 19, 40, 52, 1, 1, 2, 4, 9, 19, 41, 83, 96, 1, 1, 2, 4, 9, 19, 41, 88, 170, 177, 1, 1, 2, 4, 9, 19, 41, 88, 188, 345, 326, 1, 1, 2, 4, 9, 19, 41, 88, 189, 400, 694, 600, 1, 1, 2, 4, 9, 19, 41, 88, 189, 406, 846, 1386, 1104, 1
Offset: 0
Examples
Triangle begins: 1 1 1 1 2 1 1 2 4 1 1 2 4 8 1 1 2 4 9 15 1 1 2 4 9 19 28 1 1 2 4 9 19 40 52 1 1 2 4 9 19 41 83 96 1 1 2 4 9 19 41 88 170 177 1 1 2 4 9 19 41 88 188 345 326 1 1 2 4 9 19 41 88 189 400 694 600 1 1 2 4 9 19 41 88 189 406 846 1386 1104 1 ... [corrected by _Petros Hadjicostas_, Jun 12 2019] E.g., G(12, 9) = G(9, 7) + G(9, 6) + G(10, 7) + G(11, 8) = 170 + 88 + 188 + 400 = 846.
Links
- Robert Price, Table of n, a(n) for n = 0..1325
- Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
Crossrefs
Programs
-
Maple
G := proc(n,k) if k=0 or n =k then 1; elif k= 1 then 2 ; elif k =2 then 4; elif k > n or k < 0 then 0 ; else procname(n-3,k-2)+procname(n-3,k-3)+procname(n-2,k-2)+procname(n-1,k-1) ; end if; end proc: seq(seq(G(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Apr 14 2010
-
Mathematica
nlim = 50; Do[G[n, 0] = 1, {n, 0, nlim}]; Do[G[n, n] = 1, {n, 1, nlim}]; Do[G[n + 2, 1] = 2, {n, 0, nlim}]; Do[G[n + 3, 2] = 4, {n, 0, nlim}]; Do[G[n + 4, m] = G[n + 1, m - 2] + G[n + 1, m - 3] + G[n + 2, m - 2] + G[n + 3, m - 1], {n, 0, nlim}, {m, 3, n + 3}]; A140994 = {}; For[n = 0, n <= nlim, n++, For[k = 0, k <= n, k++, AppendTo[A140994, G[n, k]]]]; A140994 (* Robert Price, Aug 19 2019 *)
Formula
From Petros Hadjicostas, Jun 12 2019: (Start)
G(n, k) = A140997(n, n-k) for 0 <= k <= n.
Bivariate g.f.: Sum_{n,k >= 0} G(n, k)*x^n*y^k = (x^4*y^3 - x^3*y^3 - x^2*y^2 + x^2*y - x*y + 1)/((1- x*y)*(1 - x)*(1- x*y - x^2*y^2 - x^3*y^3 - x^3*y^2)).
(End)
Extensions
Entries checked by R. J. Mathar, Apr 14 2010
Comments