A140997 Triangle G(n,k) read by rows, for 0 <= k <= n, where G(n, 0) = G(n+1, n+1) = 1, G(n+2, n+1) = 2, G(n+3, n+1) = 4, and G(n+4, m) = G(n+1, m-1) + G(n+1, m) + G(n+2, m) + G(n+3, m) for n >= 0 and m = 1..n+1.
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 1, 15, 9, 4, 2, 1, 1, 28, 19, 9, 4, 2, 1, 1, 52, 40, 19, 9, 4, 2, 1, 1, 96, 83, 41, 19, 9, 4, 2, 1, 1, 177, 170, 88, 41, 19, 9, 4, 2, 1, 1, 326, 345, 188, 88, 41, 19, 9, 4, 2, 1, 1, 600, 694, 400, 189, 88, 41, 19, 9, 4, 2, 1, 1, 1104, 1386, 846, 406, 189, 88, 41, 19, 9, 4, 2, 1, 1, 2031, 2751, 1779, 871, 406, 189, 88, 41, 19, 9, 4, 2, 1, 1, 3736, 5431, 3719, 1866, 872, 406, 189, 88, 41, 19, 9, 4, 2, 1
Offset: 0
Examples
Triangle begins: 1 1 1 1 2 1 1 4 2 1 1 8 4 2 1 1 15 9 4 2 1 1 28 19 9 4 2 1 1 52 40 19 9 4 2 1 1 96 83 41 19 9 4 2 1 1 177 170 88 41 19 9 4 2 1 1 326 345 188 88 41 19 9 4 2 1 1 600 694 400 189 88 41 19 9 4 2 1 ... E.g., G(14, 2) = G(11, 1) + G(11, 2) + G(12, 2) + G(13, 2) = 600 + 694 + 1386 + 2751 = 5431.
Links
- Robert Price, Table of n, a(n) for n = 0..1325
- Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
Crossrefs
Programs
-
Mathematica
nlim = 50; Do[G[n, 0] = 1, {n, 0, nlim}]; Do[G[n + 1, n + 1] = 1, {n, 0, nlim}]; Do[G[n + 2, n + 1] = 2, {n, 0, nlim}]; Do[G[n + 3, n + 1] = 4, {n, 0, nlim}]; Do[G[n + 4, m] = G[n + 1, m - 1] + G[n + 1, m] + G[n + 2, m] + G[n + 3, m], {n, 0, nlim}, {m, 1, n + 1}]; A140997 = {}; For[n = 0, n <= nlim, n++, For[k = 0, k <= n, k++, AppendTo[A140997, G[n, k]]]]; A140997 (* Robert Price, Aug 25 2019 *)
Formula
From Petros Hadjicostas, Jun 12 2019: (Start)
G(n, k) = A140994(n, n-k) for 0 <= k <= n.
Bivariate g.f.: Sum_{n,k >= 0} G(n,k)*x^n*y^k = (1 - x - x^2 - x^3 + x^2*y + x^4*y)/((1 - x) * (1 - x*y) * (1 - x - x^2 - x^3 - x^3*y)).
Differentiating once w.r.t. y and setting y = 0, we get the g.f. of column k = 1: x/((1 - x) * (1 - x - x^2 - x^3)). This is the g.f. of sequence A008937.
(End)
Extensions
Typo in definition corrected by R. J. Mathar, Sep 19 2008
Name edited by and more terms from Petros Hadjicostas, Jun 12 2019
Deleted extraneous term at a(29) by Robert Price, Aug 25 2019
Added 13 missing terms at a(79) by Robert Price, Aug 25 2019
Comments