A141020 Pascal-like triangle with index of asymmetry y = 4 and index of obliqueness z = 0.
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 1, 16, 8, 4, 2, 1, 1, 32, 16, 8, 4, 2, 1, 1, 63, 33, 16, 8, 4, 2, 1, 1, 124, 67, 33, 16, 8, 4, 2, 1, 1, 244, 136, 67, 33, 16, 8, 4, 2, 1, 1, 480, 276, 136, 67, 33, 16, 8, 4, 2, 1, 1, 944, 560, 276, 136, 67, 33, 16, 8, 4, 2, 1
Offset: 0
Examples
Pascal-like triangle with y = 4 and z = 0 begins as follows: 1 1 1 1 2 1 1 4 2 1 1 8 4 2 1 1 16 8 4 2 1 1 32 16 8 4 2 1 1 63 33 16 8 4 2 1 1 124 67 33 16 8 4 2 1 1 244 136 67 33 16 8 4 2 1 1 480 276 136 67 33 16 8 4 2 1 1 944 560 276 136 67 33 16 8 4 2 1 ...
Links
- Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
Crossrefs
Programs
-
Maple
A141020 := proc(n,k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; elif k=n-3 then 8 ; elif k=n-4 then 16 ; else procname(n-1,k) +procname(n-2,k)+procname(n-3,k)+procname(n-4,k) +procname(n-5,k)+procname(n-5,k-1) ; fi; end: for n from 0 to 20 do for k from 0 to n do printf("%d,",A141020(n,k)) ; od: od: # R. J. Mathar, Sep 19 2008
-
Mathematica
T[n_, k_] := T[n, k] = Which[k < 0 || k > n, 0, k == 0 || k == n, 1, k == n-1, 2, k == n-2, 4, k == n-3, 8, k == n-4, 16, True, T[n-1, k] + T[n-2, k] + T[n-3, k] + T[n-4, k] + T[n-5, k] + T[n-5, k-1]]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 18 2019, after R. J. Mathar *)
Formula
From Petros Hadjicostas, Jun 14 2019: (Start)
T(n, k) = A141021(n, n-k) for 0 <= k <= n.
Bivariate g.f.: Sum_{n,k >= 0} T(n, k)*x^n*y^k = (1 - x - x^2 - x^3 - x^4 - x^5 + y*x^2*(1 + x + x^2 + x^4)) / ((1 - x) * (1 - x*y) * (1 - x - x^2 - x^3 - x^4 - x^5 - x^5*y)).
Differentiating the bivariate w.r.t. y and setting y = 0, we get the g.f. of the column k = 1: x/((-1 + x)*(x^5 + x^4 + x^3 + x^2 + x - 1)). This is the g.f. of a shifted version of sequence A001949.
(End)
Extensions
Partially edited by N. J. A. Sloane, Jul 18 2008
Recurrence rewritten by R. J. Mathar, Sep 19 2008
Comments