A141021 Pascal-like triangle with index of asymmetry y = 4 and index of obliqueness z = 1.
1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, 1, 1, 2, 4, 8, 16, 1, 1, 2, 4, 8, 16, 32, 1, 1, 2, 4, 8, 16, 33, 63, 1, 1, 2, 4, 8, 16, 33, 67, 124, 1, 1, 2, 4, 8, 16, 33, 67, 136, 244, 1, 1, 2, 4, 8, 16, 33, 67, 136, 276, 480, 1
Offset: 0
Examples
Pascal-like triangle with y = 4 and z = 1 (with rows n >= 0 and columns k >= 0) begins as follows: 1 1 1 1 2 1 1 2 4 1 1 2 4 8 1 1 2 4 8 16 1 1 2 4 8 16 32 1 1 2 4 8 16 33 63 1 1 2 4 8 16 33 67 124 1 1 2 4 8 16 33 67 136 244 1 1 2 4 8 16 33 67 136 276 480 1 1 2 4 8 16 33 67 136 276 560 944 1 ...
Links
- O. Dunkel, Solutions of a probability difference equation, Amer. Math. Monthly, 32 (1925), 354-370; see p. 356 with r = s + 1 (where s is the index of asymmetry).
- Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
Crossrefs
Programs
-
Maple
# This is a slight modification of R. J. Mathar's Maple program from array A141020: A141020 := proc(n, k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; elif k=n-3 then 8 ; elif k=n-4 then 16 ; else procname(n-1, k) +procname(n-2, k)+procname(n-3, k)+procname(n-4, k) +procname(n-5, k)+procname(n-5, k-1) ; fi; end: A141021 := proc(n, k) A141020(n, n-k): end: for n1 from 0 to 20 do for k1 from 0 to n1 do printf("%d, ", A141021(n1, k1)) ; od: od: # Petros Hadjicostas, Jun 16 2019
-
Mathematica
t[n_, k_] := t[n, k] = Which[k < 0 || k > n, 0, k == 0 || k == n, 1, k == n - 1, 2, k == n - 2, 4, k == n - 3, 8, k == n - 4, 16, True, t[n - 1, k] + t[n - 2, k] + t[n - 3, k] + t[n - 4, k] + t[n - 5, k] + t[n - 5, k - 1]]; T[n_, k_] := t[n, n - k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 24 2020 *)
Formula
T(n, k) = A141020(n, n-k). - R. J. Mathar, Sep 19 2008
From Petros Hadjicostas, Jun 16 2019: (Start)
Recurrence: G(n+6, k) = G(n+1, k-4) + G(n+1, k-5) + G(n+2, k-4) + G(n+3, k-3) + G(n+4, k-2) + G(n+5, k-1) for n >= 0 and k = 5..(n+5) with G(n+x+1, x) = 2^x for x = 0..4 and n >= 0.
Bivariate g.f.: Sum_{n,k >=0} T(n, k)*x^n*y^k = (x^6*y^5 - x^5*y^5 - x^4*y^4 + x^4*y^3 - x^3*y^3 + x^3*y^2 - x^2*y^2 + x^2*y - x*y + 1)/((1 - x*y) * (1 - x) * (1 - x*y - x^2*y^2 - x^3*y^3 - x^4*y^4 - x^5*y^4 - x^5*y^5)).
Second main diagonal: G(n, n - 1) = Sum_{t = 1..floor((n + 5)/6)} (-1)^(t + 1) * binomial(n + 4 - 5*t, t - 1) * 2^(n + 5 - 6*t) for n >= 1.
Limiting row: Let b(k) = lim_{n -> infinity} G(n, k) for k >= 0. Then b(k) = b(k-5) + 2*b(k-4) + b(k-3) + b(k-2) + b(k-1) for k >= 5 with b(x) = 2^x for x = 0..4. This is the sequence 1, 2, 4, 8, 16, 33, 67, 136, 276, 561, 1140, 2316, 4705, 9559, 19421, 39457, 80163, 162864, 330885, 672247, ..., which is A308808.
(End)
Extensions
Partially edited by N. J. A. Sloane, Jul 18 2008
Comment simplified by R. J. Mathar, Sep 19 2008
Data corrected by Jean-François Alcover, Apr 24 2020
Comments