cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A140994 Triangle G(n, k), for 0 <= k <= n, read by rows, where G(n, n) = G(n+1, 0) = 1, G(n+2, 1) = 2, G(n+3, 2) = 4, G(n+4, m) = G(n+1, m-2) + G(n+1, m-3) + G(n+2, m-2) + G(n+3, m-1) for n >= 0 and m = 3..(n+3).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, 1, 1, 2, 4, 9, 15, 1, 1, 2, 4, 9, 19, 28, 1, 1, 2, 4, 9, 19, 40, 52, 1, 1, 2, 4, 9, 19, 41, 83, 96, 1, 1, 2, 4, 9, 19, 41, 88, 170, 177, 1, 1, 2, 4, 9, 19, 41, 88, 188, 345, 326, 1, 1, 2, 4, 9, 19, 41, 88, 189, 400, 694, 600, 1, 1, 2, 4, 9, 19, 41, 88, 189, 406, 846, 1386, 1104, 1
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 08 2008

Keywords

Comments

From Petros Hadjicostas, Jun 12 2019: (Start)
This is a mirror image of the triangular array A140997. The current array has index of asymmetry s = 2 and index of obliqueness (obliquity) e = 1. Array A140997 has the same index of asymmetry, but has index of obliqueness e = 0. (In other related sequences, the author uses the letter y for the index of asymmetry and the letter z for the index of obliqueness, but on the stone slab that appears over a tomb in a picture that he posted in those sequences, the letters s and e are used instead. See, for example, the documentation for sequences A140998, A141065, A141066, and A141067.)
In general, if the index of asymmetry (from the Pascal triangle A007318) is s, then the order of the recurrence is s + 2 (because the recurrence of the Pascal triangle has order 2). There are also s + 2 infinite sets of initial conditions (as opposed to the Pascal triangle, which has only 2 infinite sets of initial conditions, namely, G(n, 0) = G(n+1, n+1) = 1 for n >= 0).
Pascal's triangle A007318 has s = 0 and is symmetric, arrays A140998 and A140993 have s = 1 (with e = 0 and e = 1, respectively), and arrays A140996 and A140995 have s = 3 (with e = 0 and e = 1, respectively).
If A(x,y) = Sum_{n,k >= 0} G(n, k)*x^n*y^k is the bivariate g.f. for this array (with G(n, k) = 0 for 0 <= n < k) and B(x, y) = Sum_{n, k} A140997(n, k)*x^n*y^k, then A(x, y) = B(x*y, y^(-1)). This can be proved using formal manipulation of double series expansions and the fact G(n, k) = A140997(n, n-k) for 0 <= k <= n.
If we let b(k) = lim_{n -> infinity} G(n, k) for k >= 0, then b(0) = 1, b(1) = 2, b(2) = 4, and b(k) = b(k-1) + 2*b(k-2) + b(k-3) for k >= 3. (The existence of the limit can be proved by induction on k.) It follows that b(k) = A141015(k) for k >= 0.
(End)

Examples

			Triangle begins:
  1
  1 1
  1 2 1
  1 2 4 1
  1 2 4 8 1
  1 2 4 9 15  1
  1 2 4 9 19 28  1
  1 2 4 9 19 40 52   1
  1 2 4 9 19 41 83  96   1
  1 2 4 9 19 41 88 170 177    1
  1 2 4 9 19 41 88 188 345  326    1
  1 2 4 9 19 41 88 189 400  694  600    1
  1 2 4 9 19 41 88 189 406  846 1386 1104 1
... [corrected by _Petros Hadjicostas_, Jun 12 2019]
E.g., G(12, 9) = G(9, 7) + G(9, 6) + G(10, 7) + G(11, 8) = 170 + 88 + 188 + 400 = 846.
		

Crossrefs

Programs

  • Maple
    G := proc(n,k) if k=0 or n =k then 1; elif k= 1 then 2 ; elif k =2 then 4; elif k > n or k < 0 then 0 ; else procname(n-3,k-2)+procname(n-3,k-3)+procname(n-2,k-2)+procname(n-1,k-1) ; end if; end proc: seq(seq(G(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Apr 14 2010
  • Mathematica
    nlim = 50;
    Do[G[n, 0] = 1, {n, 0, nlim}];
    Do[G[n, n] = 1, {n, 1, nlim}];
    Do[G[n + 2, 1] = 2, {n, 0, nlim}];
    Do[G[n + 3, 2] = 4, {n, 0, nlim}];
    Do[G[n + 4, m] =
       G[n + 1, m - 2] + G[n + 1, m - 3] + G[n + 2, m - 2] +
        G[n + 3, m - 1], {n, 0, nlim}, {m, 3, n + 3}];
    A140994 = {}; For[n = 0, n <= nlim, n++,
     For[k = 0, k <= n, k++, AppendTo[A140994, G[n, k]]]];
    A140994 (* Robert Price, Aug 19 2019 *)

Formula

From Petros Hadjicostas, Jun 12 2019: (Start)
G(n, k) = A140997(n, n-k) for 0 <= k <= n.
Bivariate g.f.: Sum_{n,k >= 0} G(n, k)*x^n*y^k = (x^4*y^3 - x^3*y^3 - x^2*y^2 + x^2*y - x*y + 1)/((1- x*y)*(1 - x)*(1- x*y - x^2*y^2 - x^3*y^3 - x^3*y^2)).
(End)

Extensions

Entries checked by R. J. Mathar, Apr 14 2010

A140996 Triangle G(n, k) read by rows for 0 <= k <= n, where G(n, 0) = G(n+1, n+1) = 1, G(n+2, n+1) = 2, G(n+3, n+1) = 4, G(n+4, n+1) = 8, and G(n+5, m) = G(n+1, m-1) + G(n+1, m) + G(n+2, m) + G(n+3, m) + G(n+4, m) for n >= 0 for m = 1..(n+1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 1, 16, 8, 4, 2, 1, 1, 31, 17, 8, 4, 2, 1, 1, 60, 35, 17, 8, 4, 2, 1, 1, 116, 72, 35, 17, 8, 4, 2, 1, 1, 224, 148, 72, 35, 17, 8, 4, 2, 1, 1, 432, 303, 149, 72, 35, 17, 8, 4, 2, 1, 1, 833, 618, 308, 149, 72, 35, 17, 8, 4, 2, 1, 1, 1606, 1257, 636, 308, 149, 72, 35, 17, 8, 4, 2, 1
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 08 2008

Keywords

Comments

From Petros Hadjicostas, Jun 12 2019: (Start)
This is a mirror image of the triangular array A140995. The current array has index of asymmetry s = 3 and index of obliqueness (obliquity) e = 0. Array A140995 has the same index of asymmetry, but has index of obliqueness e = 1. (In other related sequences, the author uses the letter y for the index of asymmetry and the letter z for the index of obliqueness, but on the stone slab that appears over a tomb in a picture that he posted in those sequences, the letters s and e are used instead. See, for example, the documentation for sequences A140998, A141065, A141066, and A141067.)
In general, if the index of asymmetry (from the Pascal triangle A007318) is s, then the order of the recurrence is s + 2 (because the recurrence of the Pascal triangle has order 2). There are also s + 2 infinite sets of initial conditions (as opposed to the Pascal triangle, which has only 2 infinite sets of initial conditions, namely, G(n, 0) = G(n+1, n+1) = 1 for n >= 0).
Pascal's triangle A007318 has s = 0 and is symmetric, arrays A140998 and A140993 have s = 1 (with e = 0 and e = 1, respectively), arrays A140997 and A140994 have s = 2 (with e = 0 and e = 1, respectively), and arrays A141020 and A141021 have s = 4 (with e = 0 and e = 1, respectively).
(End)

Examples

			Triangle (with rows n >= 0 and columns k >= 0) begins as follows:
  1
  1   1
  1   2   1
  1   4   2   1
  1   8   4   2   1
  1  16   8   4   2  1
  1  31  17   8   4  2  1
  1  60  35  17   8  4  2  1
  1 116  72  35  17  8  4  2 1
  1 224 148  72  35 17  8  4 2 1
  1 432 303 149  72 35 17  8 4 2 1
  1 833 618 308 149 72 35 17 8 4 2 1
  ...
		

Crossrefs

Programs

  • Mathematica
    nlim = 100;
    For[n = 0, n <= nlim, n++, G[n, 0] = 1];
    For[n = 1, n <= nlim, n++, G[n, n] = 1];
    For[n = 2, n <= nlim, n++, G[n, n-1] = 2];
    For[n = 3, n <= nlim, n++, G[n, n-2] = 4];
    For[n = 4, n <= nlim, n++, G[n, n-3] = 8];
    For[n = 5, n <= nlim, n++, For[k = 1, k < n - 3, k++,
       G[n, k] = G[n-4, k-1] + G[n-4, k] + G[n-3, k] + G[n-2, k] + G[n-1, k]]];
    A140996 = {}; For[n = 0, n <= nlim, n++,
    For[k = 0, k <= n, k++, AppendTo[A140996, G[n, k]]]];
    A140996 (* Robert Price, Jul 03 2019 *)
    G[n_, k_] := G[n, k] = Which[k < 0 || k > n, 0, k == 0 || k == n, 1, k == n - 1, 2, k == n - 2, 4, k == n - 3, 8, True, G[n - 1, k] + G[n - 2, k] + G[n - 3, k] + G[n - 4, k] + G[n - 4, k - 1]];
    Table[G[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 28 2024 *)

Formula

From Petros Hadjicostas, Jun 12 2019: (Start)
G(n, k) = A140995(n, n - k) for 0 <= k <= n.
Bivariate g.f.: Sum_{n,k >= 0} G(n, k)*x^n*y^k = (1 - x - x^2 - x^3 - x^4 + x^2*y + x^3*y + x^5*y)/((1 - x) * (1 - x*y) * (1 - x - x^2 - x^3 - x^4 - x^4*y)).
If we take the first derivative of the bivariate g.f. w.r.t. y and set y = 0, we get the g.f. of column k = 1: x/((1 - x) * (1 - x - x^2 - x^3 - x^4)). This is the g.f. of a shifted version of sequence A107066.
Substituting y = 1 in the above bivariate function and simplifying, we get the g.f. of row sums: 1/(1 - 2*x). Hence, the row sums are powers of 2; i.e., A000079.
(End)

Extensions

Name edited by Petros Hadjicostas, Jun 12 2019

A140995 Triangle G(n, k) read by rows, for 0 <= k <= n, where G(n, n) = G(n+1, 0) = 1, G(n+2, 1) = 2, G(n+3, 2) = 4, G(n+4, 3) = 8, and G(n+5, m) = G(n+1, m-3) + G(n+1, m-4) + G(n+2, m-3) + G(n+3, m-2) + G(n+4, m-1) for n >= 0 and m = 4..(n+4).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, 1, 1, 2, 4, 8, 16, 1, 1, 2, 4, 8, 17, 31, 1, 1, 2, 4, 8, 17, 35, 60, 1, 1, 2, 4, 8, 17, 35, 72, 116, 1, 1, 2, 4, 8, 17, 35, 72, 148, 224, 1, 1, 2, 4, 8, 17, 35, 72, 149, 303, 432, 1, 1, 2, 4, 8, 17, 35, 72, 149, 308, 618, 833, 1, 1, 2, 4, 8, 17, 35, 72, 149, 308, 636, 1257, 1606, 1
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 08 2008

Keywords

Comments

From Petros Hadjicostas, Jun 13 2019: (Start)
This is a mirror image of the triangular array A140996. The current array has index of asymmetry s = 3 and index of obliqueness (obliquity) e = 1. Array A140996 has the same index of asymmetry, but has index of obliqueness e = 0. (In other related sequences, the author uses the letter y for the index of asymmetry and the letter z for the index of obliqueness, but in a picture that he posted in those sequences, the letters s and e are used instead. See, for example, the documentation for sequences A140998, A141065, A141066, and A141067.)
Pascal's triangle A007318 has s = 0 and is symmetric, arrays A140998 and A140993 have s = 1 (with e = 0 and e = 1, respectively), and arrays A140997 and A140994 have s = 2 (with e = 0 and e = 1, respectively).
If A(x,y) = Sum_{n,k >= 0} G(n, k)*x^n*y^k is the bivariate g.f. for this array (with G(n, k) = 0 for 0 <= n < k) and B(x, y) = Sum_{n, k} A140996(n, k)*x^n*y^k, then A(x, y) = B(x*y, y^(-1)). This can be proved using formal manipulation of double series expansions and the fact G(n, k) = A140996(n, n-k) for 0 <= k <= n.
If we let b(k) = lim_{n -> infinity} G(n, k) for k >= 0, then b(0) = 1, b(1) = 2, b(2) = 4, b(3) = 8, and b(k) = b(k-1) + b(k-2) + 2*b(k-3) + b(k-4) for k >= 4. (The existence of the limit can be proved by induction on k.) Thus, the limiting sequence is 1, 2, 4, 8, 17, 35, 72, 149, 308, 636, 1314, 2715, 5609, 11588, 23941, 49462, 102188, 211120, 436173, ... (sequence A309462). (End)

Examples

			Triangle begins:
  1
  1 1
  1 2 1
  1 2 4 1
  1 2 4 8  1
  1 2 4 8 16  1
  1 2 4 8 17 31  1
  1 2 4 8 17 35 60   1
  1 2 4 8 17 35 72 116   1
  1 2 4 8 17 35 72 148 224   1
  1 2 4 8 17 35 72 149 303 432   1
  1 2 4 8 17 35 72 149 308 618 833 1
  ...
		

Crossrefs

Formula

From Petros Hadjicostas, Jun 13 2019: (Start)
G(n, k) = A140996(n, n-k) for 0 <= k <= n.
Bivariate g.f.: Sum_{n,k >= 0} G(n, k)*x^n*y^k = (x^5*y^4 - x^4*y^4 - x^3*y^3 + x^3*y^2 - x^2*y^2 + x^2*y - x*y + 1)/((1- x*y) * (1- x) * (1 - x*y - x^2*y^2 -x^3*y^3 - x^4*y^4 - x^4*y^3)).
Substituting y = 1 in the above bivariate function and simplifying, we get the g.f. of row sums: 1/(1 - 2*x). Hence, the row sums are powers of 2; i.e., A000079.
(End)

Extensions

Entries checked by R. J. Mathar, Apr 14 2010
Name edited by and more terms from Petros Hadjicostas, Jun 13 2019

A141021 Pascal-like triangle with index of asymmetry y = 4 and index of obliqueness z = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, 1, 1, 2, 4, 8, 16, 1, 1, 2, 4, 8, 16, 32, 1, 1, 2, 4, 8, 16, 33, 63, 1, 1, 2, 4, 8, 16, 33, 67, 124, 1, 1, 2, 4, 8, 16, 33, 67, 136, 244, 1, 1, 2, 4, 8, 16, 33, 67, 136, 276, 480, 1
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 11 2008

Keywords

Comments

The triangle here is A141020 with each row reversed.
From Petros Hadjicostas, Jun 16 2019: (Start)
In the attached photograph, we see that the index of asymmetry is denoted by s (rather than y) and the index of obliqueness by e (rather than z).
The general recurrence is G(n+s+2, k) = G(n+1, k-e*s+e-1) + Sum_{1 <= m <= s+1} G(n+m, k-e*s+m*e-2*e) for n >= 0 with k = 1..(n+1) when e = 0 and k = (s+1)..(n+s+1) when e = 1. The initial conditions are G(n+x+1, n-e*n+e*x-e+1) = 2^x for x=0..s and n >= 0. There is one more initial condition, namely, G(n, e*n) = 1 for n >= 0.
For s = 0, we get Pascal's triangle A007318. For s = 1, we get A140998 (e = 0) and A140993 (e = 1). For s = 2, we get A140997 (e = 0) and A140994 (e = 1). For s = 3, we get A140996 (e = 0) and A140995 (e = 1). For s = 4, we have array A141020 (with e = 0) and the current array (with e = 1). In some of these arrays, the indices n and k are sometimes shifted.
Putting k = 1 in Stepan's triangles with index of asymmetry s and index of obliqueness e = 0, we get G(n + s + 2, 1) = 1 + Sum_{1 <= m <= s+1} G(n+m, 1) for n >= 0 and k = 1..(n+1) with initial conditions G(x+1, 1) = 2^x for x = 0..s. Thus, we get a shifted version of column s+1 in array A172119. These sequences were first studied by Dunkel (1925).
Thus, the second main diagonal of Stepan's triangles with index of asymmetry s and index of obliqueness e = 1 is equal to a shifted version of column s + 1 in array A172119.
It follows from Eq. (20) on p. 360 in Dunkel (1925) that, for Stepan's triangles with index of asymmetry s and index of obliqueness e = 0, we have G(n, 1) = Sum_{t = 1..floor((n + s + 1)/(s + 2))} (-1)^(t + 1) * binomial(n + s - t*(s + 1), t - 1) * 2^(n + s - t*(s + 2) + 1) for n >= 0.
In a similar way, for Stepan's triangles with index of asymmetry s and index of obliqueness e = 1, we have G(n, n - 1) = Sum_{t = 1..floor((n + s + 1)/(s + 2))} (-1)^(t + 1) * binomial(n + s - t*(s + 1), t - 1) * 2^(n + s - t*(s + 2) + 1) for n >= 1.
Let A_s(x, y) be the bivariate g.f. of G(n, k) with index of asymmetry s and index of obliqueness e = 0 and let B_s(x, y) be the bivariate g.f. of the other G(n, k) with index of asymmetry s and index of obliqueness e = 1. Because the two triangular arrays are mirror images of each other, we have B_s(x, y) = A_s(x*y, y^(-1)).
(End)

Examples

			Pascal-like triangle with y = 4 and z = 1 (with rows n >= 0 and columns k >= 0) begins as follows:
  1
  1 1
  1 2 1
  1 2 4 1
  1 2 4 8  1
  1 2 4 8 16  1
  1 2 4 8 16 32  1
  1 2 4 8 16 33 63   1
  1 2 4 8 16 33 67 124   1
  1 2 4 8 16 33 67 136 244   1
  1 2 4 8 16 33 67 136 276 480   1
  1 2 4 8 16 33 67 136 276 560 944 1
  ...
		

Crossrefs

Programs

  • Maple
    # This is a slight modification of R. J. Mathar's Maple program from array A141020:
    A141020 := proc(n, k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; elif k=n-3 then 8 ; elif k=n-4 then 16 ; else procname(n-1, k) +procname(n-2, k)+procname(n-3, k)+procname(n-4, k) +procname(n-5, k)+procname(n-5, k-1) ; fi; end:
    A141021 := proc(n, k) A141020(n, n-k): end:
    for n1 from 0 to 20 do for k1 from 0 to n1 do printf("%d, ", A141021(n1, k1)) ; od: od: # Petros Hadjicostas, Jun 16 2019
  • Mathematica
    t[n_, k_] := t[n, k] = Which[k < 0 || k > n, 0, k == 0 || k == n, 1, k == n - 1, 2, k == n - 2, 4, k == n - 3, 8, k == n - 4, 16, True, t[n - 1, k] + t[n - 2, k] + t[n - 3, k] + t[n - 4, k] + t[n - 5, k] + t[n - 5, k - 1]];
    T[n_, k_] := t[n, n - k];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 24 2020 *)

Formula

T(n, k) = A141020(n, n-k). - R. J. Mathar, Sep 19 2008
From Petros Hadjicostas, Jun 16 2019: (Start)
Recurrence: G(n+6, k) = G(n+1, k-4) + G(n+1, k-5) + G(n+2, k-4) + G(n+3, k-3) + G(n+4, k-2) + G(n+5, k-1) for n >= 0 and k = 5..(n+5) with G(n+x+1, x) = 2^x for x = 0..4 and n >= 0.
Bivariate g.f.: Sum_{n,k >=0} T(n, k)*x^n*y^k = (x^6*y^5 - x^5*y^5 - x^4*y^4 + x^4*y^3 - x^3*y^3 + x^3*y^2 - x^2*y^2 + x^2*y - x*y + 1)/((1 - x*y) * (1 - x) * (1 - x*y - x^2*y^2 - x^3*y^3 - x^4*y^4 - x^5*y^4 - x^5*y^5)).
Second main diagonal: G(n, n - 1) = Sum_{t = 1..floor((n + 5)/6)} (-1)^(t + 1) * binomial(n + 4 - 5*t, t - 1) * 2^(n + 5 - 6*t) for n >= 1.
Limiting row: Let b(k) = lim_{n -> infinity} G(n, k) for k >= 0. Then b(k) = b(k-5) + 2*b(k-4) + b(k-3) + b(k-2) + b(k-1) for k >= 5 with b(x) = 2^x for x = 0..4. This is the sequence 1, 2, 4, 8, 16, 33, 67, 136, 276, 561, 1140, 2316, 4705, 9559, 19421, 39457, 80163, 162864, 330885, 672247, ..., which is A308808.
(End)

Extensions

Partially edited by N. J. A. Sloane, Jul 18 2008
Comment simplified by R. J. Mathar, Sep 19 2008
Data corrected by Jean-François Alcover, Apr 24 2020

A141020 Pascal-like triangle with index of asymmetry y = 4 and index of obliqueness z = 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 1, 16, 8, 4, 2, 1, 1, 32, 16, 8, 4, 2, 1, 1, 63, 33, 16, 8, 4, 2, 1, 1, 124, 67, 33, 16, 8, 4, 2, 1, 1, 244, 136, 67, 33, 16, 8, 4, 2, 1, 1, 480, 276, 136, 67, 33, 16, 8, 4, 2, 1, 1, 944, 560, 276, 136, 67, 33, 16, 8, 4, 2, 1
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 11 2008

Keywords

Comments

The left column is set to 1. The four rightmost columns start with powers of 2:
T(n, 0) = T(n, n)=1; T(n, n-1)=2; T(n, n-2)=4; T(n, n-3)=8; T(n, n-4)=16.
Recurrence: T(n, k) = T(n-1, k) + T(n-2, k) + T(n-3, k) + T(n-4, k) + T(n-5, k) + T(n-5,k-1), k = 1..n-5.
From Petros Hadjicostas, Jun 14 2019: (Start)
In the attached photograph we see that the index of asymmetry is denoted by s (rather than y) and the index of obliqueness by e (rather than z).
The general recurrence is G(n+s+2, k) = G(n+1, k-e*s+e-1) + Sum_{1 <= m <= s+1} G(n+m, k-e*s+m*e-2*e) for n >= 0 with k = 1..(n+1) when e = 0 and k = (s+1)..(n+s+1) when e = 1. The initial conditions are G(n+x+1, n-e*n+e*x-e+1) = 2^x for x=0..s and n >= 0. There is one more initial condition, namely, G(n, e*n) = 1 for n >= 0.
For s = 0, we get Pascal's triangle A007318. For s = 1, we get A140998 (e = 0) and A140993 (e = 1). For s = 2, we get A140997 (e = 0) and A140994 (e = 1). For s = 3, we get A140996 (e = 0) and A140995 (e = 1). For s = 4, we have the current array (with e = 0) and array A141021 (with e = 1). In some of these arrays, the indices n and k are sometimes shifted.
(End)

Examples

			Pascal-like triangle with y = 4 and z = 0 begins as follows:
  1
  1   1
  1   2   1
  1   4   2   1
  1   8   4   2   1
  1  16   8   4   2  1
  1  32  16   8   4  2  1
  1  63  33  16   8  4  2  1
  1 124  67  33  16  8  4  2 1
  1 244 136  67  33 16  8  4 2 1
  1 480 276 136  67 33 16  8 4 2 1
  1 944 560 276 136 67 33 16 8 4 2 1
  ...
		

Crossrefs

Programs

  • Maple
    A141020 := proc(n,k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; elif k=n-3 then 8 ; elif k=n-4 then 16 ; else procname(n-1,k) +procname(n-2,k)+procname(n-3,k)+procname(n-4,k) +procname(n-5,k)+procname(n-5,k-1) ; fi; end:
    for n from 0 to 20 do for k from 0 to n do printf("%d,",A141020(n,k)) ; od: od: # R. J. Mathar, Sep 19 2008
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k < 0 || k > n, 0, k == 0 || k == n, 1, k == n-1, 2, k == n-2, 4, k == n-3, 8, k == n-4, 16, True, T[n-1, k] + T[n-2, k] + T[n-3, k] + T[n-4, k] + T[n-5, k] + T[n-5, k-1]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 18 2019, after R. J. Mathar *)

Formula

From Petros Hadjicostas, Jun 14 2019: (Start)
T(n, k) = A141021(n, n-k) for 0 <= k <= n.
Bivariate g.f.: Sum_{n,k >= 0} T(n, k)*x^n*y^k = (1 - x - x^2 - x^3 - x^4 - x^5 + y*x^2*(1 + x + x^2 + x^4)) / ((1 - x) * (1 - x*y) * (1 - x - x^2 - x^3 - x^4 - x^5 - x^5*y)).
Differentiating the bivariate w.r.t. y and setting y = 0, we get the g.f. of the column k = 1: x/((-1 + x)*(x^5 + x^4 + x^3 + x^2 + x - 1)). This is the g.f. of a shifted version of sequence A001949.
(End)

Extensions

Partially edited by N. J. A. Sloane, Jul 18 2008
Recurrence rewritten by R. J. Mathar, Sep 19 2008

A141066 List of different composites in Pascal-like triangles with index of asymmetry y = 2 and index of obliquity z = 0 or z = 1.

Original entry on oeis.org

4, 8, 9, 15, 28, 40, 52, 96, 88, 170, 177, 188, 326, 345, 189, 400, 600, 694, 406, 846, 1104, 1386, 871, 1779, 2031, 2751, 872, 1866, 3736, 6872, 7730, 10672, 4022, 8505, 12640, 15979, 20885, 4023, 8633, 18079, 23249, 32859, 40724, 42762, 67240, 18559, 39677, 78652, 80866, 153402
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 14 2008

Keywords

Comments

For the Pascal-like triangle G(n, k) with index of asymmetry y = 2 and index of obliqueness z = 0, which is read by rows, we have G(n, 0) = G(n+1, n+1) = 1, G(n+2, n+1) = 2, G(n+3, n+1) = 4, G(n+4, k) = G(n+1, k-1) + G(n+1, k) + G(n+2, k) + G(n+3, k) for k = 1..(n+1). (This is array A140997.)
For the Pascal-like triangle with index of asymmetry y = 1 and index of obliqueness z = 1, which is read by rows, we have G(n, n) = G(n+1, 0) = 1, G(n+2, 1) = 2, G(n+3, 2) = 4, G(n+4, k) = G(n+1, k-2) + G(n+1, k-3) + G(n+2, k-2) + G(n+3, k-1) for k = 3..(n+3). (This is array A140994.)
From Petros Hadjicostas, Jun 12 2019: (Start)
The two triangular arrays A140997 and A140994, which are described above, are mirror images of each other.
To make the current sequence uniquely defined, we follow the suggestion of R. J. Mathar for sequence A141064. For each row of array A140997, the composites not appearing in earlier rows are collected, sorted, and added to the sequence. We get exactly the same sequence by working with array A140994 instead.
Finally, we mention that in the attached picture about the connection between Stepan's triangles and the Pascal triangle, the letter s is used to describe the index of asymmetry and the letter e is used to describe the index of obliqueness (instead of the letters y and z, respectively). The Pascal triangle A007318 has index of asymmetry s = y = 0 (and it does not matter whether we use e = 0 or e = 1 in the general formulas in the attached photograph).
(End)

Examples

			Pascal-like triangle with y = 2 and z = 0 (i.e., A140997) begins as follows:
  1, so no composite.
  1 1, so no composite.
  1 2 1, so no composite.
  1 4 2 1, so a(1) = 4.
  1 8 4 2 1, so a(2) = 8.
  1 15 9 4 2 1, so a(3) = 9 and a(4) = 15.
  1 28 19 9 4 2 1, so a(5) = 28.
  1 52 40 19 9 4 2 1, so a(6) = 40 and a(7) = 52.
  1 96 83 41 19 9 4 2 1, so a(8) = 96.
  1 177 170 88 41 19 9 4 2 1, so a(9) = 88, a(10) = 170, and a(11) = 177.
  1 326 345 188 88 41 19 9 4 2 1, so a(12) = 188, a(13) = 326, and a(14) = 345.
  1 600 694 400 189 88 41 19 9 4 2 1, so a(15) = 189, a(16) = 400, a(17) = 600, and a(18) = 694.
... [example edited by _Petros Hadjicostas_, Jun 11 2019]
		

Crossrefs

Cf. A007318 (y = 0), A140993 (y = 1 and z = 1), A140994 (y = 2 and z = 1), A140995 (y = 3 and z = 1), A140996 (y = 3 and z = 0), A140997 (y = 2 and z = 0), A140998 (y = 1 and z = 0), A141020 (y = 4 and z = 0), A141021 (y = 4 and z = 1), A141064 (has primes when y = 1), A141065 (has composites when y = 1), A141067 (has primes when y = 2), A141068 (has primes when y = 3), A141069 (has composites when y = 3).

Programs

  • Maple
    # This is a modification of R. J. Mathar's program for A141031 (for the case y = 4 and z = 0).
    # Construction of array A140997 (y = 2 and z = 0):
    A140997 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; elif k = n - 2 then 4; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 3, k) + procname(n - 3, k - 1); end if; end proc;
    # Construction of the current sequence:
    A141066 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140997(n, k); if not (new = 1 or isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc;
    # Generation of numbers in the current sequence:
    A141066(19);
    # If one wishes to sort the numbers, then replace RETURN(a) with RETURN(sort(a)) in the above Maple code. In this case, however, the sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019

Extensions

Partially edited by N. J. A. Sloane, Jul 18 2008
Comments and Example edited by Petros Hadjicostas, Jun 12 2019
More terms from Petros Hadjicostas, Jun 12 2019

A141067 List of different primes in Pascal-like triangles with index of asymmetry y = 2 and index of obliquity z = 0 or z = 1.

Original entry on oeis.org

2, 19, 41, 83, 3719, 5431, 1873, 3989, 8641, 18517, 38303, 79153, 136963, 2264749, 394969, 1748039, 6633577, 14820521, 18051277, 3807953189, 126558214721, 2710968363511, 803233671719, 1723473449197, 1725438080929, 7942459030543, 145539180603829, 77442861984547
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 14 2008

Keywords

Comments

For the Pascal-like triangle G(n, k) with index of asymmetry y = 2 and index of obliqueness z = 0, which is read by rows, we have G(n, 0) = G(n+1, n+1) = 1, G(n+2, n+1) = 2, G(n+3, n+1) = 4, and G(n+4, k) = G(n+1, k-1) + G(n+1, k) + G(n+2, k) + G(n+3, k) for n >= 0 and k = 1..(n+1). (This is array A140997.)
For the Pascal-like triangle G(n, k) with index of asymmetry y=1 and index of obliqueness z = 1, which is read by rows, we have G(n, n) = G(n+1, 0) = 1, G(n+2, 1) = 2, G(n+3, 2) = 4, and G(n+4, k) = G(n+1, k-2) + G(n+1, k-3) + G(n+2, k-2) + G(n+3, k-1) for n >= 0 and k = 3..(n+3). (This is array A140994.)
From Petros Hadjicostas, Jun 12 2019: (Start)
The two triangular arrays A140997 and A140994, which are described above, are mirror images of each other.
To make the current sequence uniquely defined, we follow the suggestion of R. J. Mathar for sequence A141064. For each row of array A140997, the primes not appearing in earlier rows are collected, sorted, and added to the sequence. We get exactly the same sequence by working with array A140994 instead.
Finally, we mention that in the attached picture about the connection between Stepan's triangles and the Pascal triangle, the letter s is used to describe the index of asymmetry and the letter e is used to describe the index of obliqueness (instead of the letters y and z, respectively). The Pascal triangle A007318 has index of asymmetry s = y = 0 (and it does not matter whether we use e = 0 or e = 1 in the general formulas in the attached photograph).
(End)

Examples

			Pascal-like triangle with y = 2 and z = 0 (i.e., A140997) begins as follows:
  1, so no primes.
  1 1, so no primes.
  1 2 1, then a(1) = 2.
  1 4 2 1, so no new primes.
  1 8 4 2 1, so no new primes.
  1 15 9 4 2 1, so no new primes.
  1 28 19 9 4 2 1, so a(2) = 19.
  1 52 40 19 9 4 2 1, so no new primes.
  1 96 83 41 19 9 4 2 1, so a(3) = 41 and a(4) = 83.
  1 177 170 88 41 19 9 4 2 1, so no new primes.
  1 326 345 188 88 41 19 9 4 2 1, so no new primes.
  1 600 694 400 189 88 41 19 9 4 2 1, so no new primes.
  ... [edited by _Petros Hadjicostas_, Jun 12 2019]
  Terms a(5) = 3719 and a(6) = 5431 appear in row k = 14, while terms a(7) = 1873 and a(8) = 3989 appear in row k = 15.
		

Crossrefs

Programs

  • Maple
    # This is a modification of R. J. Mathar's program for A141031 (for the case y = 4 and z = 0).
    # Construction of array A140997 (y = 2 and z = 0):
    A140997 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; elif k = n - 2 then 4; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 3, k) + procname(n - 3, k - 1); end if; end proc;
    # Construction of the current sequence:
    A141067 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140997(n, k); if not (new = 1 or not isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc;
    # Generation of the current sequence:
    A141067(50);
    # If one wishes to get the primes sorted, then he or she should replace RETURN(a) in the above Maple code with RETURN(sort(a)). In such a case, however, the sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019

Extensions

Partially edited by N. J. A. Sloane, Jul 18 2008
Comments and Example edited by Petros Hadjicostas, Jun 12 2019
More terms from Petros Hadjicostas, Jun 12 2019

A141065 List of different composite numbers in Pascal-like triangles with index of asymmetry y = 1 and index of obliqueness z = 0 or z = 1.

Original entry on oeis.org

4, 12, 20, 28, 33, 46, 54, 63, 69, 88, 168, 70, 143, 161, 289, 232, 567, 594, 169, 376, 399, 817, 1194, 407, 609, 934, 1778, 1820, 2355, 408, 975, 986, 2150, 3789, 4570, 984, 1596, 2316, 4862, 5646, 7922, 8745, 985, 2367, 2583, 9849, 10801, 16281, 16532, 4180, 5667, 17091, 23585, 30923, 32948, 2378
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 14 2008

Keywords

Comments

For the Pascal-like triangle G(n, k) with index of asymmetry y = 1 and index of obliqueness z = 0, which is read by rows, we have G(n, 0) = G(n+1, n+1) = 1, G(n+2, n+1) = 2, G(n+3, k) = G(n+1, k-1) + G(n+1, k) + G(n+2, k) for n >= 0 and k = 1..(n+1).
For the Pascal-like triangle G(n, k) with index of asymmetry y = 1 and index of obliqueness z = 1, which is read by rows, we have G(n, n) = G(n+1, 0) = 1, G(n+2, 1) = 2, G(n+3, k) = G(n+1, k-1) + G(n+1, k-2) + G(n+2, k-1) for n >= 0 and k = 2..(n+2).
From Petros Hadjicostas, Jun 09 2019: (Start)
For the triangle with index of asymmetry y = 1 and index of obliqueness z = 0, read by rows, we have G(n, k) = A140998(n, k) for 0 <= k <= n.
For the triangle with index of asymmetry y = 1 and index of obliqueness z = 1, read by rows, we have G(n, k) = A140993(n+1, k+1) for 0 <= k <= n.
Thus, except for the unfortunate shifting of the indices by 1, triangular arrays A140998 and A140993 are mirror images of each other.
As suggested by R. J. Mathar for sequence A141064, in each row of A140998, the composites not appearing in earlier rows are collected, sorted, and added to the sequence.
Obviously, instead of working with A140998, we may work with A140993: in each row of A140993, the primes not appearing in earlier rows may be collected, sorted, and added to the sequence.
Finally, we explain the meaning of the double recurrence in the attached photograph (about Stepan's triangles and Pascal's triangles).
The creator of the stone slab uses the notation G_n^k to denote either one of the two double arrays G(n, k) described above.
On the stone slab, the letter s is used to denote the "index of asymmetry" (denoted by y here) and the letter e is used to denote the 0-1 "index of obliqueness" (denoted by z here). Thus, as described above, there are two kinds of Stepan-Pascal triangles depending on whether e = z equals 0 or 1.
If e = 0, the value of k goes from 1 to n + 1, whereas if e = 1 the value of k goes from s + 1 = y + 1 (= 2 here) to n + s + 1 = n + y + 1.
The "index of asymmetry" s = y can take any (fixed) integer value from 0 to infinity. The fixed value of s = y determines the number of initial conditions: G(n + x + 1, n - e*n + e*x - e + 1) = 2^x for x = 0, 1, ..., s = y. In addition, there is one more initial condition: G(n, e*n) = 1.
The "index of asymmetry" s = y also determines the order of the recurrence (which is probably s + 2 = y + 2): G(n + s + 2, k) = G(n + 1, k - e*s + e - 1) + Sum_{1 <= m <= s + 1} G(n + m, k - e*s + m*e - 2*e).
Apparently, for convenience, the author of the current sequence has shifted the indices of the recurrences that appear on the stone slab (see at the beginning of the comments).
(End)

Examples

			Pascal-like triangle with y = 1 and z = 0 (i.e., A140998) begins as follows:
  1, so no composites.
  1 1, so no composites.
  1 2 1, so no composites.
  1 4 2 1, so a(1) = 4.
  1 7 5 2 1, so no composites.
  1 12 11 5 2 1, so a(2) = 12.
  1 20 23 12 5 2 1, so a(3) = 20.
  1 33 46 28 12 5 2 1, so a(4) = 28, a(5) = 33, and a(6) = 46.
  1 54 89 63 29 12 5 2 1, so a(7) = 54 and a(8) = 63.
  1 88 168 137 69 29 12 5 2 1, so a(9) = 69, a(10) = 88, and a(11) = 168.
  1 143 311 289 161 70 29 12 5 2 1, so a(12) = 70, a(13) = 143, a(14) = 161, and a(15) = 289.
  1 232 567 594 367 168 70 29 12 5 2 1, so a(16) = 232, a(17) = 567, and a(18) = 594.
  ... [example edited by _Petros Hadjicostas_, Jun 11 2019]
		

Crossrefs

Cf. A140993 (mirror image of A140998 with y = 1 and z = 1), A140994 (triangle when y = 2 and z = 1), A140995 (triangle when y = 3 and z = 1), A140996 (triangle when y = 3 and z = 0), A140997 (triangle when y = 2 and z = 0), A140998 (has the above triangle with y = 1 and z = 0), A141020, A141021, A141064 (has primes for y = 1), A141066 (has composites when y = 2), A141067 (has primes when y = 2), A141068 (has primes when y = 3), A141069 (has composites when y = 3).

Programs

  • Maple
    # This is a modification of R. J. Mathar's program for A141031 (for the case y = 4 and z = 0).
    # Construction of array A140998 (y = 1 and z = 0):
    A140998 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 2, k - 1); end if; end proc;
    # Construction of the current sequence:
    A141065 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140998(n, k); if not (new = 1 or isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc;
    # Generation of terms of the current sequence:
    A141065(24);
    # If one wishes to sort composites, then one may replace RETURN(a) in the above Maple code with RETURN(sort(a)). In such a case, however, the output sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019

Extensions

Partially edited by N. J. A. Sloane, Jul 18 2008

A141069 List of different composites in Pascal-like triangles with index of asymmetry y = 3 and index of obliqueness z = 0 or z = 1.

Original entry on oeis.org

4, 8, 16, 35, 60, 72, 116, 148, 224, 303, 432, 308, 618, 833, 636, 1257, 1606, 1313, 2550, 3096, 1314, 2709, 5160, 5968, 2715, 5584, 10418, 11504, 5609, 11499, 20991, 22175, 23655, 42215, 42744, 11588, 23934, 48607, 82392, 84752, 23941, 99763, 158816, 169880
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 16 2008

Keywords

Comments

For the Pascal-like triangle with index of asymmetry y = 3 and index of obliqueness z = 0, which is read by rows, we have G(n, 0) = G(n+1, n+1) = 1, G(n+2, n+1) = 2, G(n+3, n+1) = 4, G(n+4, n+1) = 8, and G(n+5, k) = G(n+1, k-1) + G(n+1, k) + G(n+2, k) + G(n+3, k) + G(n+4, k) for n >= 0 and k = 1..(n+1). (This is array A140996.)
For the Pascal-like triangle with index of asymmetry y = 3 and index of obliqueness z = 1, which is read by rows, we have G(n, n) = G(n+1, 0) = 1, G(n+2, 1) = 2, G(n+3, 2) = 4, G(n+4, 3) = 8, and G(n+5, k) = G(n+1, k-3) + G(n+1, k-4) + G(n+2, k-3) + G(n+3, k-2) + G(n+4, k-1) for n >= 0 and k = 4..(n+4). (This is array A140995.)
From Petros Hadjicostas, Jun 13 2019: (Start)
The arrays A140995 and A140996, which are described above, are mirror images of one another.
To make the current sequence uniquely defined, we follow the suggestion of R. J. Mathar for sequence A141064. For each row of array A140996, the composites not appearing in earlier rows are collected, sorted, and added to the sequence. We get exactly the same sequence by working with array A140995 instead.
Finally, we explain the meaning of the double recurrence in the attached photograph. It concerns the connection between Stepan's triangles and Pascal's triangles. The creator of the stone slab uses the notation G_n^k to denote the double array G(n, k), where 0 <= k <= n.
On the stone slab, the letter s is used to denote the "index of asymmetry" (denoted by y here) and the letter e is used to denote the 0-1 "index of obliqueness" (denoted by z here). Thus, as described above, there are two kinds of Stepan-Pascal triangles depending on whether e is equal to 0 or 1. (The case s = 0 corresponds to Pascal's triangle A007318.)
If e = 0, the value of k goes from 1 to n + 1, whereas if e = 1 the value of k goes from s + 1 to n + s + 1.
The "index of asymmetry" s = y can take any (fixed) integer value from 0 to infinity. The fixed value of s = y determines the number of initial conditions: G(n + x + 1, n - e*n + e*x - e + 1) = 2^x for x = 0, 1, ..., s. In addition, there is one more initial condition: G(n, e*n) = 1.
The "index of asymmetry" s = y also determines the order of the recurrence (which is probably s + 2 = y + 2): G(n + s + 2, k) = G(n + 1, k - e*s + e - 1) + Sum_{1 <= m <= s + 1} G(n + m, k - e*s + m*e - 2*e).
(End)

Examples

			Pascal-like triangle with y = 3 and z = 0 (i.e., A140996) begins as follows:
  1, so no composites.
  1 1, so no composites.
  1 2 1, so no composites.
  1 4 2 1, so a(1) = 4.
  1 8 4 2 1, so a(2) = 8.
  1 16 8 4 2 1, so a(3) = 16.
  1 31 17 8 4 2 1, so no new composites.
  1 60 35 17 8 4 2 1, so a(4) = 35 and a(5) = 60.
  1 116 72 35 17 8 4 2 1, so a(6) = 72 and a(7) = 116.
  1 224 148 72 35 17 8 4 2 1, so a(8) = 148 and a(9) = 224.
  1 432 303 149 72 35 17 8 4 2 1, so a(10) = 303 and a(11) = 432.
... [edited by _Petros Hadjicostas_, Jun 13 2019]
		

Crossrefs

Programs

  • Maple
    # This is a modification of R. J. Mathar's program from sequence A141031 (for the case y = 4 and z = 0).
    # Definition of sequence A140996 (y = 3 and z = 0):
    A140996 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; elif k = n - 2 then 4; elif k = n - 3 then 8; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 3, k) + procname(n - 4, k) + procname(n - 4, k - 1); end if; end proc;
    # Definition of current sequence:
    A141069 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140996(n, k); if not (new = 1 or isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc;
    # Generation of current sequence until row n = 30:
    A141069(30);
    # If one wishes the composites to be sorted, then replace RETURN(a) with RETURN(sort(a)) in the above Maple code. In such a case, however, the output may not necessarily be uniquely defined (because it changes with the value of n). - Petros Hadjicostas, Jun 15 2019

Extensions

Partially edited by N. J. A. Sloane, Jul 18 2008
More terms from Petros Hadjicostas, Jun 13 2019

A141068 List of different primes in Pascal-like triangles with index of asymmetry y = 3 and index of obliquity z = 0 or z = 1.

Original entry on oeis.org

2, 17, 31, 149, 11587, 49429, 15701951, 21304973, 3846277, 251375273, 5449276159, 296410704409, 750391353973, 205109154121, 875366796349, 72210869205443, 139884035510017, 79014319582741129, 94461530406533783, 2562508045902551
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 16 2008

Keywords

Comments

For the Pascal-like triangle with index of asymmetry y = 3 and index of obliqueness z = 0, which is read by rows, we have G(n, 0) = G(n+1, n+1) = 1, G(n+2, n+1) = 2, G(n+3, n+1) = 4, G(n+4, n+1) = 8, and G(n+5, k) = G(n+1, k-1) + G(n+1, k) + G(n+2, k) + G(n+3, k) + G(n+4, k) for k = 1..(n+1). (This is array A140996.)
For the Pascal-like triangle with index of asymmetry y = 3 and index of obliqueness z = 1, which is read by rows, we have G(n, n) = G(n+1, 0) = 1, G(n+2, 1) = 2, G(n+3, 2) = 4, G(n+4, 3) = 8, and G(n+5, k) = G(n+1, k-3) + G(n+1, k-4) + G(n+2, k-3) + G(n+3, k-2) + G(n+4, k-1) for k = 4..(n+4). (This is array A140995.)
From Petros Hadjicostas, Jun 13 2019: (Start)
The two triangular arrays A140995 and A140996, which are described above, are mirror images of each other.
To make the current sequence uniquely defined, we follow the suggestion of R. J. Mathar for sequence A141064. For each row of array A140996, the primes not appearing in earlier rows are collected, sorted, and added to the sequence. We get exactly the same sequence by working with array A140995 instead.
Finally, we mention that in the attached picture about the connection between Stepan's triangles and the Pascal triangle, the letter s is used to describe the index of asymmetry and the letter e is used to describe the index of obliqueness (instead of the letters y and z, respectively). The Pascal triangle A007318 has index of asymmetry s = y = 0.
(End)

Examples

			Pascal-like triangle with y = 3 and z = 0 (i.e., A140996) begins as follows:
  1, so no primes.
  1 1, so no primes
  1 2 1, so a(1) = 2.
  1 4 2 1, so no new primes.
  1 8 4 2 1, so no new primes.
  1 16 8 4 2 1, so new primes.
  1 31 17 8 4 2 1, so a(2) = 17 and a(3) = 31.
  1 60 35 17 8 4 2 1, so no new primes.
  1 116 72 35 17 8 4 2 1, so no new primes.
  1 224 148 72 35 17 8 4 2 1, so new primes.
  1 432 303 149 72 35 17 8 4 2 1, so a(4) = 149.
  ...
		

Crossrefs

Programs

  • Maple
    # This is a modification of R. J. Mathar's program for A141031 (for the case y = 4 and z = 0).
    # Definition of sequence A140996 (y = 3 and z = 0):
    A140996 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; elif k = n - 2 then 4; elif k = n - 3 then 8; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 3, k) + procname(n - 4, k) + procname(n - 4, k - 1); end if; end proc;
    # Definition of the current sequence:
    A141068 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140996(n, k); if not (new = 1 or not isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc;
    # Generation of the current sequence:
    A141068(80);
    # If one wishes to get the primes sorted (as R. J. Mathar does in A141031), then replace RETURN(a) in the code above with RETURN(sort(a)). In such a case, however, the output sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019

Extensions

Partially edited by N. J. A. Sloane, Jul 18 2008
More terms from Petros Hadjicostas, Jun 13 2019
Showing 1-10 of 13 results. Next