A141056 1 followed by A027760, a variant of Bernoulli number denominators.
1, 2, 6, 2, 30, 2, 42, 2, 30, 2, 66, 2, 2730, 2, 6, 2, 510, 2, 798, 2, 330, 2, 138, 2, 2730, 2, 6, 2, 870, 2, 14322, 2, 510, 2, 6, 2, 1919190, 2, 6, 2, 13530, 2, 1806, 2, 690, 2, 282, 2, 46410, 2, 66, 2, 1590, 2, 798, 2, 870, 2, 354, 2, 56786730, 2, 6, 2, 510, 2, 64722, 2, 30, 2, 4686
Offset: 0
Keywords
Examples
The rational values as given by the e.g.f. in the formula section start: 1, 1/2, 7/6, 3/2, 59/30, 5/2, 127/42, 7/2, 119/30, ... - _Peter Luschny_, Aug 18 2018
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10080
- Thomas Clausen, Lehrsatz aus einer Abhandlung Über die Bernoullischen Zahlen, Astr. Nachr. 17 (22) (1840), 351-352.
- Wikipedia, Bernoulli number
Programs
-
Maple
Clausen := proc(n) local S,i; S := numtheory[divisors](n); S := map(i->i+1,S); S := select(isprime,S); mul(i,i=S) end proc: seq(Clausen(i),i=0..24); # Peter Luschny, Apr 29 2009 A141056 := proc(n) if n = 0 then 1 else A027760(n) end if; end proc: # R. J. Mathar, Oct 28 2013
-
Mathematica
a[n_] := Sum[ Boole[ PrimeQ[d+1]] / (d+1), {d, Divisors[n]}] // Denominator; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Aug 09 2012 *)
-
PARI
A141056(n) = { p = 1; if (n > 0, fordiv(n, d, r = d + 1; if (isprime(r), p = p*r) ) ); return(p) } for(n=0,70,print1(A141056(n), ", ")); /* Peter Luschny, May 07 2012 */
Formula
a(n) are the denominators of the polynomials generated by cosh(x*z)*z/(1-exp(-z)) evaluated x=1. See A176328 for the numerators. - Peter Luschny, Aug 18 2018
a(n) = denominator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)*B(j)), where B are the Bernoulli numbers A164555/A027642. - Fabián Pereyra, Jan 06 2022
Extensions
Extended by R. J. Mathar, Nov 22 2009
Comments