cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141056 1 followed by A027760, a variant of Bernoulli number denominators.

Original entry on oeis.org

1, 2, 6, 2, 30, 2, 42, 2, 30, 2, 66, 2, 2730, 2, 6, 2, 510, 2, 798, 2, 330, 2, 138, 2, 2730, 2, 6, 2, 870, 2, 14322, 2, 510, 2, 6, 2, 1919190, 2, 6, 2, 13530, 2, 1806, 2, 690, 2, 282, 2, 46410, 2, 66, 2, 1590, 2, 798, 2, 870, 2, 354, 2, 56786730, 2, 6, 2, 510, 2, 64722, 2, 30, 2, 4686
Offset: 0

Views

Author

Paul Curtz, Aug 01 2008

Keywords

Comments

The denominators of the Bernoulli numbers for n>0. B_n sequence begins 1, -1/2, 1/6, 0/2, -1/30, 0/2, 1/42, 0/2, ... This is an alternative version of A027642 suggested by the theorem of Clausen. - Peter Luschny, Apr 29 2009
Let f(n,k) = gcd { multinomial(n; n1, ..., nk) | n1 + ... + nk = n }; then a(n) = f(N,N-n+1)/f(N,N-n) for N >> n. - Mamuka Jibladze, Mar 07 2017

Examples

			The rational values as given by the e.g.f. in the formula section start: 1, 1/2, 7/6, 3/2, 59/30, 5/2, 127/42, 7/2, 119/30, ... - _Peter Luschny_, Aug 18 2018
		

Crossrefs

Programs

  • Maple
    Clausen := proc(n) local S,i;
    S := numtheory[divisors](n); S := map(i->i+1,S);
    S := select(isprime,S); mul(i,i=S) end proc:
    seq(Clausen(i),i=0..24);
    # Peter Luschny, Apr 29 2009
    A141056 := proc(n)
        if n = 0 then 1 else A027760(n) end if;
    end proc: # R. J. Mathar, Oct 28 2013
  • Mathematica
    a[n_] := Sum[ Boole[ PrimeQ[d+1]] / (d+1), {d, Divisors[n]}] // Denominator; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Aug 09 2012 *)
  • PARI
    A141056(n) =
    {
        p = 1;
        if (n > 0,
            fordiv(n, d,
                r = d + 1;
                if (isprime(r), p = p*r)
            )
        );
        return(p)
    }
    for(n=0,70,print1(A141056(n), ", ")); /* Peter Luschny, May 07 2012 */

Formula

a(n) are the denominators of the polynomials generated by cosh(x*z)*z/(1-exp(-z)) evaluated x=1. See A176328 for the numerators. - Peter Luschny, Aug 18 2018
a(n) = denominator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)*B(j)), where B are the Bernoulli numbers A164555/A027642. - Fabián Pereyra, Jan 06 2022

Extensions

Extended by R. J. Mathar, Nov 22 2009