A141064 List of different primes in Pascal-like triangles with index of asymmetry y = 1 and index of obliquity z = 0 or z = 1.
2, 5, 7, 11, 23, 29, 89, 137, 311, 367, 1021, 3217, 5441, 2377, 12619, 65761, 5741, 144593, 13859, 78511, 1462397, 33461, 469957, 2552939, 11096497, 5930669, 6343133, 26512597, 470831, 127626137, 372222703, 15955507, 538270693, 531077333, 11401285549, 38613943, 15433507333, 92554537183, 113828092793
Offset: 1
Keywords
Examples
Pascal-like triangle with y = 1 and z = 0 (i.e, A140998) begins as follows: 1, so no prime. 1 1, so no primes. 1 2 1, so a(1) = 2. 1 4 2 1, so no new primes. 1 7 5 2 1, so a(2) = 5 and a(3) = 7. 1 12 11 5 2 1, so a(4) = 11. 1 20 23 12 5 2 1, so a(5) = 23. 1 33 46 28 12 5 2 1, so no new primes. 1 54 89 63 29 12 5 2 1, so a(6) = 29 and a(7) = 89. 1 88 168 137 69 29 12 5 2 1, so a(8) = 137. 1 143 311 289 161 70 29 12 5 2 1, so a(9) = 311. 1 232 567 594 367 168 70 29 12 5 2 1, so a(10) = 367. ... [edited by _Petros Hadjicostas_, Jun 11 2019]
Links
- Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
Crossrefs
Programs
-
Maple
# This is a modification R. J. Mathar's program from A141031 (for the case y = 4 and z = 0). # Construct array A140998 (y = 1 and z = 0): A140998 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 2, k - 1); end if; end proc; # Construct the current sequence: A141064 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140998(n, k); if not (new = 1 or not isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc; # Generate terms of the current sequence: A141064(38); # If one wants to get the primes sorted, then replace RETURN(a) in the Maple code above with RETURN(sort(a)). In such a case, however, the output sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019
Extensions
Partially edited by N. J. A. Sloane, Jul 18 2008
More terms from R. J. Mathar, Apr 28 2010
More terms from Petros Hadjicostas, Jun 11 2019
Comments