A141065 List of different composite numbers in Pascal-like triangles with index of asymmetry y = 1 and index of obliqueness z = 0 or z = 1.
4, 12, 20, 28, 33, 46, 54, 63, 69, 88, 168, 70, 143, 161, 289, 232, 567, 594, 169, 376, 399, 817, 1194, 407, 609, 934, 1778, 1820, 2355, 408, 975, 986, 2150, 3789, 4570, 984, 1596, 2316, 4862, 5646, 7922, 8745, 985, 2367, 2583, 9849, 10801, 16281, 16532, 4180, 5667, 17091, 23585, 30923, 32948, 2378
Offset: 1
Keywords
Examples
Pascal-like triangle with y = 1 and z = 0 (i.e., A140998) begins as follows: 1, so no composites. 1 1, so no composites. 1 2 1, so no composites. 1 4 2 1, so a(1) = 4. 1 7 5 2 1, so no composites. 1 12 11 5 2 1, so a(2) = 12. 1 20 23 12 5 2 1, so a(3) = 20. 1 33 46 28 12 5 2 1, so a(4) = 28, a(5) = 33, and a(6) = 46. 1 54 89 63 29 12 5 2 1, so a(7) = 54 and a(8) = 63. 1 88 168 137 69 29 12 5 2 1, so a(9) = 69, a(10) = 88, and a(11) = 168. 1 143 311 289 161 70 29 12 5 2 1, so a(12) = 70, a(13) = 143, a(14) = 161, and a(15) = 289. 1 232 567 594 367 168 70 29 12 5 2 1, so a(16) = 232, a(17) = 567, and a(18) = 594. ... [example edited by _Petros Hadjicostas_, Jun 11 2019]
Links
- Petros Hadjicostas, Table of n, a(n) for n = 1..120
- Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
Crossrefs
Cf. A140993 (mirror image of A140998 with y = 1 and z = 1), A140994 (triangle when y = 2 and z = 1), A140995 (triangle when y = 3 and z = 1), A140996 (triangle when y = 3 and z = 0), A140997 (triangle when y = 2 and z = 0), A140998 (has the above triangle with y = 1 and z = 0), A141020, A141021, A141064 (has primes for y = 1), A141066 (has composites when y = 2), A141067 (has primes when y = 2), A141068 (has primes when y = 3), A141069 (has composites when y = 3).
Programs
-
Maple
# This is a modification of R. J. Mathar's program for A141031 (for the case y = 4 and z = 0). # Construction of array A140998 (y = 1 and z = 0): A140998 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 2, k - 1); end if; end proc; # Construction of the current sequence: A141065 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140998(n, k); if not (new = 1 or isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc; # Generation of terms of the current sequence: A141065(24); # If one wishes to sort composites, then one may replace RETURN(a) in the above Maple code with RETURN(sort(a)). In such a case, however, the output sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019
Extensions
Partially edited by N. J. A. Sloane, Jul 18 2008
Comments