A141066 List of different composites in Pascal-like triangles with index of asymmetry y = 2 and index of obliquity z = 0 or z = 1.
4, 8, 9, 15, 28, 40, 52, 96, 88, 170, 177, 188, 326, 345, 189, 400, 600, 694, 406, 846, 1104, 1386, 871, 1779, 2031, 2751, 872, 1866, 3736, 6872, 7730, 10672, 4022, 8505, 12640, 15979, 20885, 4023, 8633, 18079, 23249, 32859, 40724, 42762, 67240, 18559, 39677, 78652, 80866, 153402
Offset: 1
Keywords
Examples
Pascal-like triangle with y = 2 and z = 0 (i.e., A140997) begins as follows: 1, so no composite. 1 1, so no composite. 1 2 1, so no composite. 1 4 2 1, so a(1) = 4. 1 8 4 2 1, so a(2) = 8. 1 15 9 4 2 1, so a(3) = 9 and a(4) = 15. 1 28 19 9 4 2 1, so a(5) = 28. 1 52 40 19 9 4 2 1, so a(6) = 40 and a(7) = 52. 1 96 83 41 19 9 4 2 1, so a(8) = 96. 1 177 170 88 41 19 9 4 2 1, so a(9) = 88, a(10) = 170, and a(11) = 177. 1 326 345 188 88 41 19 9 4 2 1, so a(12) = 188, a(13) = 326, and a(14) = 345. 1 600 694 400 189 88 41 19 9 4 2 1, so a(15) = 189, a(16) = 400, a(17) = 600, and a(18) = 694. ... [example edited by _Petros Hadjicostas_, Jun 11 2019]
Links
- Petros Hadjicostas, Table of n, a(n) for n = 1..191 [b-file format amended by _Georg Fischer_, Jun 22 2019]
- Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
Crossrefs
Cf. A007318 (y = 0), A140993 (y = 1 and z = 1), A140994 (y = 2 and z = 1), A140995 (y = 3 and z = 1), A140996 (y = 3 and z = 0), A140997 (y = 2 and z = 0), A140998 (y = 1 and z = 0), A141020 (y = 4 and z = 0), A141021 (y = 4 and z = 1), A141064 (has primes when y = 1), A141065 (has composites when y = 1), A141067 (has primes when y = 2), A141068 (has primes when y = 3), A141069 (has composites when y = 3).
Programs
-
Maple
# This is a modification of R. J. Mathar's program for A141031 (for the case y = 4 and z = 0). # Construction of array A140997 (y = 2 and z = 0): A140997 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; elif k = n - 2 then 4; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 3, k) + procname(n - 3, k - 1); end if; end proc; # Construction of the current sequence: A141066 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140997(n, k); if not (new = 1 or isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc; # Generation of numbers in the current sequence: A141066(19); # If one wishes to sort the numbers, then replace RETURN(a) with RETURN(sort(a)) in the above Maple code. In this case, however, the sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019
Extensions
Partially edited by N. J. A. Sloane, Jul 18 2008
Comments and Example edited by Petros Hadjicostas, Jun 12 2019
More terms from Petros Hadjicostas, Jun 12 2019
Comments