A141067 List of different primes in Pascal-like triangles with index of asymmetry y = 2 and index of obliquity z = 0 or z = 1.
2, 19, 41, 83, 3719, 5431, 1873, 3989, 8641, 18517, 38303, 79153, 136963, 2264749, 394969, 1748039, 6633577, 14820521, 18051277, 3807953189, 126558214721, 2710968363511, 803233671719, 1723473449197, 1725438080929, 7942459030543, 145539180603829, 77442861984547
Offset: 1
Keywords
Examples
Pascal-like triangle with y = 2 and z = 0 (i.e., A140997) begins as follows: 1, so no primes. 1 1, so no primes. 1 2 1, then a(1) = 2. 1 4 2 1, so no new primes. 1 8 4 2 1, so no new primes. 1 15 9 4 2 1, so no new primes. 1 28 19 9 4 2 1, so a(2) = 19. 1 52 40 19 9 4 2 1, so no new primes. 1 96 83 41 19 9 4 2 1, so a(3) = 41 and a(4) = 83. 1 177 170 88 41 19 9 4 2 1, so no new primes. 1 326 345 188 88 41 19 9 4 2 1, so no new primes. 1 600 694 400 189 88 41 19 9 4 2 1, so no new primes. ... [edited by _Petros Hadjicostas_, Jun 12 2019] Terms a(5) = 3719 and a(6) = 5431 appear in row k = 14, while terms a(7) = 1873 and a(8) = 3989 appear in row k = 15.
Links
- Petros Hadjicostas, Table of n, a(n) for n = 1..64
- Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
Crossrefs
Programs
-
Maple
# This is a modification of R. J. Mathar's program for A141031 (for the case y = 4 and z = 0). # Construction of array A140997 (y = 2 and z = 0): A140997 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; elif k = n - 2 then 4; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 3, k) + procname(n - 3, k - 1); end if; end proc; # Construction of the current sequence: A141067 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140997(n, k); if not (new = 1 or not isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc; # Generation of the current sequence: A141067(50); # If one wishes to get the primes sorted, then he or she should replace RETURN(a) in the above Maple code with RETURN(sort(a)). In such a case, however, the sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019
Extensions
Partially edited by N. J. A. Sloane, Jul 18 2008
Comments and Example edited by Petros Hadjicostas, Jun 12 2019
More terms from Petros Hadjicostas, Jun 12 2019
Comments