A141068 List of different primes in Pascal-like triangles with index of asymmetry y = 3 and index of obliquity z = 0 or z = 1.
2, 17, 31, 149, 11587, 49429, 15701951, 21304973, 3846277, 251375273, 5449276159, 296410704409, 750391353973, 205109154121, 875366796349, 72210869205443, 139884035510017, 79014319582741129, 94461530406533783, 2562508045902551
Offset: 1
Keywords
Examples
Pascal-like triangle with y = 3 and z = 0 (i.e., A140996) begins as follows: 1, so no primes. 1 1, so no primes 1 2 1, so a(1) = 2. 1 4 2 1, so no new primes. 1 8 4 2 1, so no new primes. 1 16 8 4 2 1, so new primes. 1 31 17 8 4 2 1, so a(2) = 17 and a(3) = 31. 1 60 35 17 8 4 2 1, so no new primes. 1 116 72 35 17 8 4 2 1, so no new primes. 1 224 148 72 35 17 8 4 2 1, so new primes. 1 432 303 149 72 35 17 8 4 2 1, so a(4) = 149. ...
Links
- Juri-Stepan Gerasimov, Pascal-like triangles and Pascal's triangle are connected by the recurrence relation ...
Crossrefs
Programs
-
Maple
# This is a modification of R. J. Mathar's program for A141031 (for the case y = 4 and z = 0). # Definition of sequence A140996 (y = 3 and z = 0): A140996 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; elif k = n - 2 then 4; elif k = n - 3 then 8; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 3, k) + procname(n - 4, k) + procname(n - 4, k - 1); end if; end proc; # Definition of the current sequence: A141068 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140996(n, k); if not (new = 1 or not isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc; # Generation of the current sequence: A141068(80); # If one wishes to get the primes sorted (as R. J. Mathar does in A141031), then replace RETURN(a) in the code above with RETURN(sort(a)). In such a case, however, the output sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019
Extensions
Partially edited by N. J. A. Sloane, Jul 18 2008
More terms from Petros Hadjicostas, Jun 13 2019
Comments