A141072 Sum of diagonal numbers in a Pascal-like triangle with index of asymmetry y = 3 and index of obliquity z = 0 (going upwards, left to right).
1, 1, 2, 3, 6, 11, 22, 42, 83, 162, 319, 626, 1231, 2419, 4756, 9349, 18380, 36133, 71036, 139652, 274549, 539748, 1061117, 2086100, 4101165, 8062677, 15850806, 31161863, 61262610, 120439119, 236777074, 465491470, 915132135, 1799102406, 3536942203, 6953445286
Offset: 1
Keywords
Examples
Pascal-like triangle with y = 3 and z = 0 (i.e, A140996) begins as follows: 1, so a(1) = 1. 1 1, so a(2) = 1. 1 2 1, so a(3) = 1 + 1 = 2. 1 4 2 1, so a(4) = 1 + 2 = 3. 1 8 4 2 1, so a(5) = 1 + 4 + 1 = 6. 1 16 8 4 2 1, so a(6) = 1 + 8 + 2 = 11. 1 31 17 8 4 2 1, so a(7) = 1 + 16 + 4 + 1 = 22. 1 60 35 17 8 4 2 1, so a(8) = 1 + 31 + 8 + 2 = 42. 1 116 72 35 17 8 4 2 1, so a(9) = 1 + 60 + 17 + 4 + 1 = 83. 1 224 148 72 35 17 8 4 2 1, so a(10) = 1 + 116 + 35 + 8 + 2 = 162. 1 432 303 149 72 35 17 8 4 2 1, so a(11) = 1 + 224 + 72 + 17 + 4 + 1 = 319. ... [edited by _Petros Hadjicostas_, Jun 13 2019]
Links
- Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
Crossrefs
Formula
From Petros Hadjicostas, Jun 13 2019: (Start)
a(n) = Sum_{ceiling((n-1)/2) <= i <= n-1} G(i, n-1-i) for n >= 1, where G(n, k) = A140996(n, k) for 0 <= k <= n.
G.f.: x*(1 - x^2 - x^3 - x^4 - x^5)/((1 - x)*(1 + x)*(1 - x - x^2 - x^3 - x^4 - x^5)) = x*(1 - x^2 - x^3 - x^4 - x^5)/(1 - x - 2*x^2 + x^6 + x^7).
Recurrence: a(n) = -(3 + (-1)^n)/2 + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) for n >= 6 with a(1) = a(2) = 1, a(3) = 2, a(4) = 3, and a(5) = 6.
(End)
Extensions
Partially edited by N. J. A. Sloane, Jul 18 2008
Name edited by and more terms from Petros Hadjicostas, Jun 13 2019
Comments