A141073 List of central integer pairs in Pascal-like triangles with index of asymmetry y = 3 and index of obliqueness z = 0 or z = 1.
1, 1, 4, 2, 8, 4, 17, 8, 35, 17, 72, 35, 149, 72, 308, 149, 636, 308, 1314, 636, 2715, 1314, 5609, 2715, 11588, 5609, 23941, 11588, 49462, 23941, 102188, 49462, 211120, 102188, 436173, 211120, 901131, 436173, 1861732, 901131, 3846329, 1861732, 7946496, 3846329
Offset: 1
Examples
Pascal-like triangle with y = 3 and z = 0 (i.e., A140996) begins as follows: 1, so no central pair. 1 1, so a(1) = 1 and a(2) = 1. 1 2 1, so no central pair. 1 4 2 1, so a(3) = 4 and a(4) = 2. 1 8 4 2 1, so no central pair. 1 16 8 4 2 1, so a(5) = 8 and a(6) = 4. 1 31 17 8 4 2 1, so no central pair. 1 60 35 17 8 4 2 1, so a(7) = 17 and a(8) = 8. 1 116 72 35 17 8 4 2 1, so no central pair. 1 224 148 72 35 17 8 4 2 1, so a(9) = 35 and a(10) = 17. 1 432 303 149 72 35 17 8 4 2 1, so no central pair. 1 833 618 308 149 72 35 17 8 4 2 1, so a(11) = 72 and a(12) = 35. ... [edited by _Petros Hadjicostas_, Jun 13 2019]
Links
- Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Crossrefs
Programs
-
Mathematica
Rest[CoefficientList[Series[x*(x^8 + 3*x^6 + x^5 + 3*x^4 + x^3 + 3*x^2 + x + 1)/(1 - x^2 - x^4 - 2*x^6 -x^8),{x,0,44}],x]] (* James C. McMahon, Jul 16 2025 *)
Formula
From Petros Hadjicostas, Jun 13 2019: (Start)
a(2*n - 1) = A140996(2*n - 1, n - 1) = A140995(2*n - 1, n) and a(2*n) = A140996(2*n - 1, n) = A140995(2*n - 1, n - 1) for n >= 1.
a(2*n) = a(2*n - 3) for n >= 3.
a(n) = 2*a(n-2) + A129847(floor(n/2) - (4 + (-1)^n)) for n >= 9.
G.f.: x*(x^8 + 3*x^6 + x^5 + 3*x^4 + x^3 + 3*x^2 + x + 1)/(1 - x^2 - x^4 - 2*x^6 -x^8). (End)
Extensions
Partially edited by N. J. A. Sloane, Jul 18 2008
More terms from Petros Hadjicostas, Jun 13 2019
Comments