A141152 L.g.f.: A(x) = log( 1 + Sum_{n>=1} n^(n-1)*x^n ) = Sum_{n>=1} a(n)*x^n/n.
1, 3, 22, 219, 2771, 42432, 762539, 15736131, 366842002, 9536745963, 273601703035, 8587640290656, 292752138541643, 10772040284616075, 425539049950420682, 17963758770051942339, 807032690733694275307
Offset: 1
Keywords
Examples
L.g.f.: A(x) = x + 3*x^2/2 + 22*x^3/3 + 219*x^4/4 + 2771*x^5/5 +... exp(A(x)) = 1 + x + 2*x^2 + 9*x^3 + 64*x^4 + 625*x^5 + 7776*x^6 +...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..380
Crossrefs
Cf. A141151.
Programs
-
PARI
{a(n)=polcoeff(x*deriv(log(Ser(concat(1,vector(n+1,k,k^(k-1)))))),n)}
Formula
a(n) ~ n^n. - Vaclav Kotesovec, May 30 2019