A141154 L.g.f.: A(x) = log( 1 + Sum_{n>=1} (n-1)!*x^n ) = Sum_{n>=1} a(n)*x^n/n.
1, 1, 4, 17, 91, 574, 4173, 34353, 316012, 3214181, 35832567, 434643518, 5700340569, 80391481045, 1213353891124, 19516682949217, 333307249446083, 6023617863581806, 114854054775272053, 2304312940318519977
Offset: 1
Keywords
Examples
L.g.f.: A(x) = x + x^2/2 + 4*x^3/3 + 17*x^4/4 + 91*x^5/5 + 574*x^6/6 +... exp(A(x)) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 24*x^5 + 120*x^6 +...
Programs
-
PARI
{a(n)=polcoeff(x*deriv(log(Ser(concat(1,vector(n+1,k,(k-1)!))))),n)}