cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141166 Primes of the form x^2+15*x*y-y^2.

Original entry on oeis.org

37, 53, 173, 193, 229, 241, 347, 359, 383, 439, 443, 449, 461, 503, 509, 541, 593, 607, 617, 619, 643, 691, 907, 967, 977, 1019, 1051, 1063, 1097, 1109, 1249, 1277, 1291, 1303, 1321, 1399, 1429, 1583, 1667, 1741, 1783, 1993, 1997, 2003, 2087, 2137, 2143, 2333, 2347, 2351
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Discriminant = 229. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d = b^2-4ac. They can represent primes only if gcd(a,b,c)=1. [Edited by M. F. Hasler, Jan 27 2016]
Appears to be the complement of A141165 in A268155, primes that are squares mod 229. - M. F. Hasler, Jan 27 2016

Examples

			a(2)=53 because we can write 53= 3^2+15*3*1-1^2
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141165 (d=229).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    lim = 100; Rest@ Union@ Abs@ Flatten@ Table[x^2 + 15 x y - y^2, {x, lim}, {y, lim}] /. n_ /; CompositeQ@ n -> Nothing (* Michael De Vlieger, Jan 27 2016 *)
  • PARI
    is_A141166(p)=qfbsolve(Qfb(1,15,-1),p) \\ Returns nonzero (actually, a solution [x,y]) iff p is a member of the sequence. For efficiency it is assumed that p is prime. Example usage: select(is_A141166,primes(500)) - M. F. Hasler, Jan 27 2016