A141177 Primes of the form -2*x^2 + 3*x*y + 3*y^2 (as well as of the form 4*x^2 + 7*x*y + y^2).
3, 31, 37, 67, 97, 103, 157, 163, 181, 199, 223, 229, 313, 331, 367, 379, 397, 421, 433, 463, 487, 499, 577, 619, 631, 643, 661, 691, 709, 727, 751, 757, 823, 829, 859, 883, 907, 991, 1021, 1039, 1087, 1093, 1123, 1153, 1171, 1213, 1237, 1279, 1291, 1303, 1321, 1423, 1453, 1483
Offset: 1
Keywords
Examples
a(2) = 31 because we can write 31 = -2*4^2 + 3*4*3 + 3*3^2 (or 31 = 4*2^2 + 7*2*1 + 1^2).
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
- D. B. Zagier, Zetafunktionen und quadratische Körper: Eine Einführung in die höhere Zahlentheorie, Springer-Verlag Berlin Heidelberg, 1981, DOI 10.1007/978-3-642-61829-1.
Links
- Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Cf. A141176 (d=33); A038872 (d=5); A038873 (d=8); A068228, A141123 (d=12); A038883 (d=13); A038889 (d=17); A141111, A141112 (d=65).
Cf. A243185 (numbers of the form -2*x^2 + 3*x*y + 3*y^2).
Cf. A107013.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Programs
-
Mathematica
Select[Prime[Range[500]], # == 3 || MatchQ[Mod[#, 33], Alternatives[1, 4, 16, 25, 31]]&] (* Jean-François Alcover, Oct 28 2016 *)
Comments