cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141180 Primes of the form x^2+6*x*y-y^2 (as well as of the form 6*x^2+8*x*y+y^2).

Original entry on oeis.org

31, 41, 71, 79, 89, 151, 191, 199, 239, 241, 271, 281, 311, 359, 401, 409, 431, 439, 449, 479, 521, 569, 599, 601, 631, 641, 719, 751, 761, 769, 809, 839, 881, 911, 919, 929, 991, 1009, 1031, 1039, 1049, 1129, 1151, 1201, 1231, 1249, 1279, 1289, 1319, 1321, 1361, 1399, 1409, 1439
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (lourdescm84(AT)hotmail.com), Jun 12 2008

Keywords

Comments

Discriminant = 40. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
Also primes of form 10*u^2 - v^2. The transformation {u, v} = {-x, 3*x-y} yields the form in the title, and primes of form U^2 - 10*V^2, with transformation {U, V} = {x+3*y, y}. - Juan Arias-de-Reyna, Mar 19 2011
Therefore, these primes are composite in Q(sqrt(10)), as they can be factored thus: (-u + v*sqrt(10))*(u + v*sqrt(10)). - Alonso del Arte, Jul 22 2012
All primes p such that (p^2 - 1)/24 mod 10 = 0. See A024702. - Richard R. Forberg, Aug 27 2013

Examples

			a(2) = 41 because we can write 41 = 3^2 + 6*3*2 - 2^2 (or 41 = 6*2^2 + 8*2*1 + 1^2). Furthermore, notice that (-7 + 3*sqrt(10))(7 + 3*sqrt(10)) = 41.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A141179 (d=40) A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17): A141111, A141112 (d=65). A024702.
Cf. also A242664.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    Take[Select[Union[Flatten[Table[Abs[a^2 - 10b^2], {a, 0, 49}, {b, 0, 49}]]], PrimeQ], 50] (* Alonso del Arte, Jul 22 2012 *)
    Select[Prime[Range[250]], MatchQ[Mod[#, 40], Alternatives[1, 9, 31, 39]]&] (* Jean-François Alcover, Oct 28 2016 *)

Extensions

Removed defective Mma program. - N. J. A. Sloane, Jun 06 2014