A141180 Primes of the form x^2+6*x*y-y^2 (as well as of the form 6*x^2+8*x*y+y^2).
31, 41, 71, 79, 89, 151, 191, 199, 239, 241, 271, 281, 311, 359, 401, 409, 431, 439, 449, 479, 521, 569, 599, 601, 631, 641, 719, 751, 761, 769, 809, 839, 881, 911, 919, 929, 991, 1009, 1031, 1039, 1049, 1129, 1151, 1201, 1231, 1249, 1279, 1289, 1319, 1321, 1361, 1399, 1409, 1439
Offset: 1
Keywords
Examples
a(2) = 41 because we can write 41 = 3^2 + 6*3*2 - 2^2 (or 41 = 6*2^2 + 8*2*1 + 1^2). Furthermore, notice that (-7 + 3*sqrt(10))(7 + 3*sqrt(10)) = 41.
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Mathematica
Take[Select[Union[Flatten[Table[Abs[a^2 - 10b^2], {a, 0, 49}, {b, 0, 49}]]], PrimeQ], 50] (* Alonso del Arte, Jul 22 2012 *) Select[Prime[Range[250]], MatchQ[Mod[#, 40], Alternatives[1, 9, 31, 39]]&] (* Jean-François Alcover, Oct 28 2016 *)
Extensions
Removed defective Mma program. - N. J. A. Sloane, Jun 06 2014
Comments