cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141190 Primes of the form 2*x^2+4*x*y-5*y^2 (as well as of the form 2*x^2+8*x*y+y^2).

Original entry on oeis.org

2, 11, 43, 67, 107, 113, 137, 163, 179, 193, 211, 233, 281, 331, 337, 347, 379, 401, 443, 449, 457, 491, 499, 547, 569, 571, 617, 641, 659, 673, 683, 739, 809, 827, 883, 907, 947, 953, 977, 1009, 1019, 1033, 1051, 1129, 1163, 1171, 1187, 1201, 1283, 1289
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (marcanmar(AT)alum.us.es), Jun 12 2008

Keywords

Comments

Discriminant = 56. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.
Also primes of the form x^2 + 6xy - 5y^2, cf. A243186. - N. J. A. Sloane, Jun 05 2014

Examples

			a(3) = 43 is in the sequence because we can write 43 = 2*4^2 + 4*4*1 - 5*1^2, or 43 = 2*3^2 + 8*3*1 + 1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A141191 (d=56) A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).
Cf. A243186.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    xy[{x_, y_}]:={2 x^2 + 4 x y - 5 y^2, 2 y^2 + 4 x y - 5 x^2}; Union[Select[Flatten[xy/@Subsets[Range[50], {2}]], #>0&&PrimeQ[#]&]] (* Vincenzo Librandi, Jun 09 2014 *)