A141190 Primes of the form 2*x^2+4*x*y-5*y^2 (as well as of the form 2*x^2+8*x*y+y^2).
2, 11, 43, 67, 107, 113, 137, 163, 179, 193, 211, 233, 281, 331, 337, 347, 379, 401, 443, 449, 457, 491, 499, 547, 569, 571, 617, 641, 659, 673, 683, 739, 809, 827, 883, 907, 947, 953, 977, 1009, 1019, 1033, 1051, 1129, 1163, 1171, 1187, 1201, 1283, 1289
Offset: 1
Keywords
Examples
a(3) = 43 is in the sequence because we can write 43 = 2*4^2 + 4*4*1 - 5*1^2, or 43 = 2*3^2 + 8*3*1 + 1^2.
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Mathematica
xy[{x_, y_}]:={2 x^2 + 4 x y - 5 y^2, 2 y^2 + 4 x y - 5 x^2}; Union[Select[Flatten[xy/@Subsets[Range[50], {2}]], #>0&&PrimeQ[#]&]] (* Vincenzo Librandi, Jun 09 2014 *)
Comments