A141193 Primes of the form -3*x^2+3*x*y+4*y^2 (as well as of the form 6*x^2+9*x*y+y^2).
7, 19, 43, 61, 73, 139, 157, 163, 199, 229, 271, 277, 283, 313, 349, 367, 397, 457, 463, 499, 541, 571, 577, 613, 619, 631, 643, 691, 709, 727, 733, 739, 757, 769, 823, 853, 859, 883, 919, 937, 967, 997, 1033, 1051, 1069, 1087, 1201, 1213, 1279, 1297, 1303, 1327, 1423, 1429
Offset: 1
Keywords
Examples
a(2)=19 because we can write 19=-3*1^2+3*1*2+4*2^2
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Mathematica
Select[Prime[Range[250]], # == 19 || MatchQ[Mod[#, 57], Alternatives[1, 4, 7, 16, 25, 28, 43, 49, 55]]&] (* Jean-François Alcover, Oct 28 2016 *)
Comments