cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A227852 G.f. A(x) satisfies: A(x) = Series_Reversion( x - (A(x)^2 + A(-x)^2)/2 ).

Original entry on oeis.org

1, 1, 2, 10, 44, 294, 1728, 13389, 93130, 796620, 6235288, 57551130, 493813936, 4857378920, 44989814920, 468103507718, 4633862094852, 50749496457992, 533271010341720, 6126256486912776, 67990630238066888, 817168635245112432, 9541543704324657008, 119719059789052412360
Offset: 1

Views

Author

Paul D. Hanna, Oct 31 2013

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 10*x^4 + 44*x^5 + 294*x^6 + 1728*x^7 +...
The series reversion of A(x), G(x) where A(G(x)) = x, begins:
G(x) = x - x^2 - 5*x^4 - 112*x^6 - 4320*x^8 - 227766*x^10 - 14942616*x^12 - 1162657840*x^14 +...+ (-1)^n * A263531(n)*x^(2*n) +...
and can be formed from a bisection of A(x)^2:
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 24*x^5 + 112*x^6 + 716*x^7 + 4320*x^8 + 32290*x^9 + 227766*x^10 + 1893488*x^11 + 14942616*x^12 + 134816212*x^13 + 1162657840*x^14 +...
The related g.f. of A263531, F(x) = -(A(I*x)^2 + A(-I*x)^2)/2, satisfies: F(x) = B(x)^2 - C(x)^2 such that B(x) + I*C(x) = Series_Reversion(x - I*F(x)), where I^2 = -1:
F(x) = x^2 - 5*x^4 + 112*x^6 - 4320*x^8 + 227766*x^10 - 14942616*x^12 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x);for(i=1,n,A=serreverse(x-(A^2+subst(A^2,x,-x +x*O(x^n)))/2));polcoeff(A,n)}
    for(n=1,25,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, (A^2+subst(A,x,-x)^2)^m/2^m/m!))+x*O(x^n)); polcoeff(A,n)}
    for(n=1,25,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = x + (A(A(x))^2 + A(-A(x))^2)/2.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (A(x)^2 + A(-x)^2)^n / (n!*2^n).
(3) (A(I*x)^2 + A(-I*x)^2)/2 = -F(x), where F(x) is the g.f. of A263531 and satisfies: F(x) = B(x)^2 - C(x)^2 such that B(x) + I*C(x) = Series_Reversion(x - I*F(x)), where I^2 = -1.

A263530 G.f. A(x) satisfies: A(x) = B(x)^2 + C(x)^2 such that B(x) + I*C(x) = Series_Reversion(x - I*A(x)), where I^2 = -1.

Original entry on oeis.org

1, -3, 52, -1596, 68174, -3679964, 238949640, -18133397519, 1578639190316, -155623090726884, 17203681850199360, -2116171636238243028, 287762930191296817296, -43014624174283817327952, 7032470676704382424751408, -1251802142595596587066746328, 241602713767787669715442097616, -50368862903110844612768593045136, 11303387910446267256159298807620472
Offset: 1

Views

Author

Paul D. Hanna, Oct 20 2015

Keywords

Examples

			G.f.: A(x) = x^2 - 3*x^4 + 52*x^6 - 1596*x^8 + 68174*x^10 - 3679964*x^12 + 238949640*x^14 - 18133397519*x^16 +...
such that A(x) = B(x)^2 + C(x)^2 and B(x) and C(x) are defined by
Series_Reversion(x - I*A(x)) = B(x) + I*C(x), where
B(x) = x - 2*x^3 + 32*x^5 - 944*x^7 + 39366*x^9 - 2090576*x^11 + 134136792*x^13 - 10085875720*x^15 + 871536657504*x^17 +...+ (-1)^(n-1)*A141202(2*n-1)*x^(2*n-1) +...
C(x) = x^2 - 8*x^4 + 178*x^6 - 6255*x^8 + 293652*x^10 - 17085798*x^12 + 1182991528*x^14 - 95087538324*x^16 +...+ (-1)^(n-1)*A141202(2*n)*x^(2*n) +...
and
B(x)^2 = x^2 - 4*x^4 + 68*x^6 - 2016*x^8 + 83532*x^10 - 4399032*x^12 + 280046448*x^14 - 20916418480*x^16 + 1797498262020*x^18 +...
C(x)^2 = x^4 - 16*x^6 + 420*x^8 - 15358*x^10 + 719068*x^12 - 41096808*x^14 + 2783020961*x^16 - 218859071704*x^18 +...
Further
G(x) = -I*B(I*x) - C(I*x) = x + x^2 + 2*x^3 + 8*x^4 + 32*x^5 + 178*x^6 + 944*x^7 + 6255*x^8 + 39366*x^9 + 293652*x^10 +...+ A141202(n)*x^n +...
where G(x + G(x)*G(-x)) = x.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x^2, D); for(i=0,2*n, D=serreverse(x - I*A +O(x^(2*n+1))); A = real(D)^2 + imag(D)^2  ); polcoeff(A,2*n)}
    for(n=1,20,print1(a(n),", "))
    
  • PARI
    /* Differential Series */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A = x^2 +O(x^(2*n+2))); for(i=1, 2*n, D = x + sum(m=1, 2*n, I^m*Dx(m-1, A^m/m!) +O(x^(2*n+2))); A = real(D)^2 + imag(D)^2 ); polcoeff(A, 2*n)}
    for(n=1, 20, print1(a(n), ", "))

Formula

Let G(x) be the g.f. of A141202, where G(x + G(x)*G(-x)) = x, and B(x) + I*C(x) = Series_Reversion(x - I*A(x)), then
(1) G(x)*G(-x) = A(I*x).
(2) G(x + A(I*x)) = x.
(3) G(x) = x - A( I*G(x) ).
(4) G(x) = -I*B(I*x) - C(I*x), where A(x) = B(x)^2 + C(x)^2.
(5) B(x) + I*C(x) = x - Sum_{n>=1} d^(n-1)/dx^(n-1) I^n*A(x)^n/n!, where A(x) = B(x)^2 + C(x)^2.

A295767 G.f. A(x) satisfies: A(x + A(x)*A(-x)) = x - A(x)*A(-x).

Original entry on oeis.org

1, 2, 4, 18, 76, 500, 2888, 23018, 160556, 1449996, 11575640, 114832932, 1019757080, 10926139752, 106088136208, 1215141302498, 12753198909052, 155094128725196, 1745058840478104, 22420718376535948, 268759075046461512, 3634051693946151736, 46176378783947578800, 655022571579520952068, 8785797027703008422264, 130388708648538590304216, 1839515449214236524003120
Offset: 1

Views

Author

Paul D. Hanna, Dec 04 2017

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 4*x^3 + 18*x^4 + 76*x^5 + 500*x^6 + 2888*x^7 + 23018*x^8 + 160556*x^9 + 1449996*x^10 + 11575640*x^11 + 114832932*x^12 + 1019757080*x^13 + 10926139752*x^14 + 106088136208*x^15 + 1215141302498*x^16 +...
such that A(x + A(x)*A(-x))  =  x - A(x)*A(-x).
RELATED SERIES.
-A(x)*A(-x) = x^2 + 4*x^4 + 96*x^6 + 4060*x^8 + 239920*x^10 + 17996072*x^12 + 1630314752*x^14 + 173202828908*x^16 + 21167253920784*x^18 + 2935439183937720*x^20 +...
(A(x) + x)/2 = x + x^2 + 2*x^3 + 9*x^4 + 38*x^5 + 250*x^6 + 1444*x^7 + 11509*x^8 + 80278*x^9 + 724998*x^10 + 5787820*x^11 + 57416466*x^12 +...
sqrt( -A(x)*A(-x) ) = x + 2*x^3 + 46*x^5 + 1938*x^7 + 115026*x^9 + 8678836*x^11 + 790630586*x^13 + 84398006438*x^15 + 10355026866054*x^17 + 1440596696075200*x^19 + 224937262867609220*x^21 +...
		

Crossrefs

Cf. A141202.

Programs

  • PARI
    {a(n) = my(A=[1],G=x); for(i=1,n, A=concat(A,0); G = x*Ser(A); A[#A] = -Vec(subst(G,x, x + G*subst(G,x,-x)) + G*subst(G,x,-x))[#A]);A[n]}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = x + 2*B( (A(x) + x)/2 ), where B(x) = -A(x)*A(-x).
(2) A(x) = -x + 2*Series_Reversion( x + A(x)*A(-x) ).
(3) x = A( -x + 2*Series_Reversion( x - A(x)*A(-x) ) ).
(4) A(x + A(x)*A(-x)) = x - A(x)*A(-x).
Showing 1-3 of 3 results.