A141227 Maximum number of points visible from some point in a cubic n x n x n lattice.
1, 8, 27, 57, 111, 183, 303, 435, 633, 843, 1155, 1443, 1893, 2313, 2895, 3447, 4215, 4875, 5865, 6723, 7887, 8943, 10371, 11553, 13293, 14745, 16707, 18411, 20703, 22485, 25257, 27459, 30423, 32931, 36291, 38889, 42837, 45950, 50115, 53523
Offset: 1
Keywords
Links
- Eric Weisstein, MathWorld: Visible Point
Crossrefs
Cf. A141224.
Programs
-
Mathematica
Table[mx=0; Do[cnt=0; Do[If[GCD[d-a,e-b,f-c]<2, cnt++ ], {a,n}, {b,n}, {c,n}]; If[cnt>mx, mx=cnt], {d,n}, {e,n}, {f,n}]; mx, {n,10}]
Formula
The maximum number of visible points is slightly more than c*n^3, with c = 1/zeta(3) = 0.831907... (A088453).
Comments