A141287 Years in which there are five Fridays in the month of February.
1760, 1788, 1828, 1856, 1884, 1924, 1952, 1980, 2008, 2036, 2064, 2092, 2104, 2132, 2160, 2188, 2228, 2256, 2284, 2324, 2352, 2380, 2408, 2436, 2464, 2492, 2504, 2532, 2560, 2588, 2628, 2656, 2684, 2724, 2752, 2780, 2808, 2836, 2864, 2892, 2904, 2932
Offset: 1
Links
- Index entries for sequences related to calendars
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
Crossrefs
Programs
-
Maple
A141287 := proc(n) nper := (n-1) mod 14 ; floor((n-1)/14)*400+op(1+nper ,[1760, 1788, 1828, 1856, 1884, 1924, 1952, 1980, 2008, 2036, 2064, 2092, 2104, 2132]) ; end proc: seq(A141287(n),n=1..80) ; # R. J. Mathar, Jan 25 2010
-
Mathematica
(* First do *) Needs["Calendar`"] (* then *) fQ[y_] := Mod[y, 4] == 0 && Mod[y, 400]!=0 && DayOfWeek[{y, 2, 1}] == Friday; Select[Range[1750, 3051], fQ@# &] (* Robert G. Wilson v, Jun 11 2010 *) (* Second program, needing Mma version >= 9.0 *) okQ[y_] := Mod[y, 4] == 0 && DayCount[{y, 1, 31}, DatePlus[{y, 3, 1}, -1], Friday] == 5; Select[Range[1752, 3051, 4], okQ] (* Jean-François Alcover, Mar 27 2020 *)
Extensions
More terms using the 400-year periodicity of the Gregorian calendar by R. J. Mathar, Jan 25 2010