cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141287 Years in which there are five Fridays in the month of February.

Original entry on oeis.org

1760, 1788, 1828, 1856, 1884, 1924, 1952, 1980, 2008, 2036, 2064, 2092, 2104, 2132, 2160, 2188, 2228, 2256, 2284, 2324, 2352, 2380, 2408, 2436, 2464, 2492, 2504, 2532, 2560, 2588, 2628, 2656, 2684, 2724, 2752, 2780, 2808, 2836, 2864, 2892, 2904, 2932
Offset: 1

Views

Author

J. Lowell, Aug 01 2008

Keywords

Crossrefs

Cf. A119406 (Sun), A135795 (Mon), A143994 (Tue), A141039 (Wed), A143995 (Thu), A176478 (Sat).

Programs

  • Maple
    A141287 := proc(n) nper := (n-1) mod 14 ; floor((n-1)/14)*400+op(1+nper ,[1760, 1788, 1828, 1856, 1884, 1924, 1952, 1980, 2008, 2036, 2064, 2092, 2104, 2132]) ; end proc: seq(A141287(n),n=1..80) ; # R. J. Mathar, Jan 25 2010
  • Mathematica
    (* First do *) Needs["Calendar`"] (* then *) fQ[y_] := Mod[y, 4] == 0 && Mod[y, 400]!=0 && DayOfWeek[{y, 2, 1}] == Friday; Select[Range[1750, 3051], fQ@# &] (* Robert G. Wilson v, Jun 11 2010 *)
    (* Second program, needing Mma version >= 9.0 *)
    okQ[y_] := Mod[y, 4] == 0 && DayCount[{y, 1, 31}, DatePlus[{y, 3, 1}, -1], Friday] == 5;
    Select[Range[1752, 3051, 4], okQ] (* Jean-François Alcover, Mar 27 2020 *)

Extensions

More terms using the 400-year periodicity of the Gregorian calendar by R. J. Mathar, Jan 25 2010