A141312 Inverse Euler transform of A003480.
1, 2, 4, 12, 31, 92, 256, 772, 2291, 7000, 21476, 66804, 208935, 658924, 2088628, 6656820, 21306270, 68468796, 220776444, 714117012, 2316229821, 7531561676, 24545492916, 80160031076, 262279882239, 859660694960, 2822177751148, 9278647613760, 30547880467863
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- J.-C. Novelli and J.-Y. Thibon, Free quasi-symmetric functions and descent algebras for wreath products and noncommutative multi-symmetric functions, arXiv:0806.3682 [math.CO], 2008.
Crossrefs
Cf. A003480.
Programs
-
Maple
EULERi(INVERT([seq(n+1,n=1..20)]));
-
Mathematica
terms = 29; mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0]; EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i=1, i <= Length[b], i++, c = Append[c, i b[[i]] - Sum[c[[d]] b[[i-d]], {d, 1, i-1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i) Sum[mob[i, d] c[[d]], {d, 1, i}]]]; Return[a]]; Join[{1}, EULERi[LinearRecurrence[{4, -2}, {2, 7}, terms-1]]] (* Jean-François Alcover, Nov 25 2018 *)
Formula
a(n) ~ (2 + sqrt(2))^n / n. - Vaclav Kotesovec, Oct 09 2019
Extensions
More terms from Alois P. Heinz, Feb 20 2017
Comments