A141341 Totally Goldbach numbers: Positive integers k such that for all primes p < k-1 with p not dividing k, k-p is prime.
1, 2, 3, 4, 5, 6, 8, 10, 12, 18, 24, 30
Offset: 1
Links
- J-M. Deshouillers, A. Granville, W. Narkiewicz and C. Pomerance, An upper bound in Goldbach's problem, Math. Comp. 61 (1993), 209-213.
- David van Golstein Brouwers, John Bamberg and Grant Cairns, Totally Goldbach numbers and related conjectures, The Australian Mathematical Society, Gazette, Volume 31 Number 4, September 2004.
- Index entries for sequences related to Goldbach conjecture
Programs
-
Mathematica
q[k_]:=AllTrue[k-Select[Prime[Range[PrimePi[k-2]]],!Divisible[k,#]&],PrimeQ];Select[Range[30],q[#]&] (* James C. McMahon, Jul 21 2025 *)
Comments